49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
// the optimize routines below are here to reduce the detrimental effects of
// messy mapping by setting certain properties (vdeltas and textures) to
// neighbouring values wherever there is no visible difference. This allows the
// mipmapper to generate more efficient mips. the reason it is done on save is
// to reduce the amount spend in the mipmapper (as that is done in realtime).
inline bool
nhf(sqr *s)
{
return s->type != FHF && s->type != CHF;
}
void
voptimize() // reset vdeltas on non-hf cubes
{
loop(x, ssize) loop(y, ssize)
{
sqr *s = S(x, y);
if (x && y) {
if (nhf(s) && nhf(S(x - 1, y)) &&
nhf(S(x - 1, y - 1)) && nhf(S(x, y - 1)))
s->vdelta = 0;
} else
s->vdelta = 0;
}
}
void
topt(sqr *s, bool &wf, bool &uf, int &wt, int &ut)
{
sqr *o[4];
o[0] = SWS(s, 0, -1, ssize);
o[1] = SWS(s, 0, 1, ssize);
o[2] = SWS(s, 1, 0, ssize);
o[3] = SWS(s, -1, 0, ssize);
wf = true;
uf = true;
if (SOLID(s)) {
loopi(4) if (!SOLID(o[i]))
{
wf = false;
wt = s->wtex;
ut = s->utex;
return;
}
} else {
loopi(4) if (!SOLID(o[i]))
{
if (o[i]->floor < s->floor) {
wt = s->wtex;
wf = false;
}
if (o[i]->ceil > s->ceil) {
ut = s->utex;
uf = false;
}
}
}
}
void
toptimize() // FIXME: only does 2x2, make atleast for 4x4 also
{
bool wf[4], uf[4];
sqr *s[4];
for (int x = 2; x < ssize - 4; x += 2) {
for (int y = 2; y < ssize - 4; y += 2) {
s[0] = S(x, y);
int wt = s[0]->wtex, ut = s[0]->utex;
topt(s[0], wf[0], uf[0], wt, ut);
topt(s[1] = SWS(s[0], 0, 1, ssize), wf[1], uf[1], wt,
ut);
topt(s[2] = SWS(s[0], 1, 1, ssize), wf[2], uf[2], wt,
ut);
topt(s[3] = SWS(s[0], 1, 0, ssize), wf[3], uf[3], wt,
ut);
loopi(4)
{
if (wf[i])
s[i]->wtex = wt;
if (uf[i])
s[i]->utex = ut;
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
// the optimize routines below are here to reduce the detrimental effects of
// messy mapping by setting certain properties (vdeltas and textures) to
// neighbouring values wherever there is no visible difference. This allows the
// mipmapper to generate more efficient mips. the reason it is done on save is
// to reduce the amount spend in the mipmapper (as that is done in realtime).
inline bool
nhf(struct sqr *s)
{
return s->type != FHF && s->type != CHF;
}
void
voptimize() // reset vdeltas on non-hf cubes
{
loop(x, ssize) loop(y, ssize)
{
struct sqr *s = S(x, y);
if (x && y) {
if (nhf(s) && nhf(S(x - 1, y)) &&
nhf(S(x - 1, y - 1)) && nhf(S(x, y - 1)))
s->vdelta = 0;
} else
s->vdelta = 0;
}
}
static void
topt(struct sqr *s, bool *wf, bool *uf, int *wt, int *ut)
{
struct sqr *o[4];
o[0] = SWS(s, 0, -1, ssize);
o[1] = SWS(s, 0, 1, ssize);
o[2] = SWS(s, 1, 0, ssize);
o[3] = SWS(s, -1, 0, ssize);
*wf = true;
*uf = true;
if (SOLID(s)) {
loopi(4) if (!SOLID(o[i]))
{
*wf = false;
*wt = s->wtex;
*ut = s->utex;
return;
}
} else {
loopi(4) if (!SOLID(o[i]))
{
if (o[i]->floor < s->floor) {
*wt = s->wtex;
*wf = false;
}
if (o[i]->ceil > s->ceil) {
*ut = s->utex;
*uf = false;
}
}
}
}
void
toptimize() // FIXME: only does 2x2, make atleast for 4x4 also
{
bool wf[4], uf[4];
struct sqr *s[4];
for (int x = 2; x < ssize - 4; x += 2) {
for (int y = 2; y < ssize - 4; y += 2) {
s[0] = S(x, y);
int wt = s[0]->wtex, ut = s[0]->utex;
topt(s[0], &wf[0], &uf[0], &wt, &ut);
topt(s[1] = SWS(s[0], 0, 1, ssize), &wf[1], &uf[1], &wt,
&ut);
topt(s[2] = SWS(s[0], 1, 1, ssize), &wf[2], &uf[2], &wt,
&ut);
topt(s[3] = SWS(s[0], 1, 0, ssize), &wf[3], &uf[3], &wt,
&ut);
loopi(4)
{
if (wf[i])
s[i]->wtex = wt;
if (uf[i])
s[i]->utex = ut;
}
|
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
return;
}
hdr.version = MAPVERSION;
hdr.numents = 0;
for (Entity *e in ents)
if (e.type != NOTUSED)
hdr.numents++;
header tmp = hdr;
endianswap(&tmp.version, sizeof(int), 4);
endianswap(&tmp.waterlevel, sizeof(int), 16);
gzwrite(f, &tmp, sizeof(header));
for (Entity *e in ents) {
if (e.type != NOTUSED) {
struct persistent_entity tmp = { e.x, e.y, e.z, e.attr1,
e.type, e.attr2, e.attr3, e.attr4 };
endianswap(&tmp, sizeof(short), 4);
gzwrite(f, &tmp, sizeof(persistent_entity));
}
}
sqr *t = NULL;
int sc = 0;
#define spurge \
while (sc) { \
gzputc(f, 255); \
if (sc > 255) { \
gzputc(f, 255); \
sc -= 255; \
} else { \
gzputc(f, sc); \
sc = 0; \
} \
}
loopk(cubicsize)
{
sqr *s = &world[k];
#define c(f) (s->f == t->f)
// 4 types of blocks, to compress a bit:
// 255 (2): same as previous block + count
// 254 (3): same as previous, except light // deprecated
// SOLID (5)
// anything else (9)
|
|
|
|
|
|
|
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
return;
}
hdr.version = MAPVERSION;
hdr.numents = 0;
for (Entity *e in ents)
if (e.type != NOTUSED)
hdr.numents++;
struct header tmp = hdr;
endianswap(&tmp.version, sizeof(int), 4);
endianswap(&tmp.waterlevel, sizeof(int), 16);
gzwrite(f, &tmp, sizeof(struct header));
for (Entity *e in ents) {
if (e.type != NOTUSED) {
struct persistent_entity tmp = { e.x, e.y, e.z, e.attr1,
e.type, e.attr2, e.attr3, e.attr4 };
endianswap(&tmp, sizeof(short), 4);
gzwrite(f, &tmp, sizeof(struct persistent_entity));
}
}
struct sqr *t = NULL;
int sc = 0;
#define spurge \
while (sc) { \
gzputc(f, 255); \
if (sc > 255) { \
gzputc(f, 255); \
sc -= 255; \
} else { \
gzputc(f, sc); \
sc = 0; \
} \
}
loopk(cubicsize)
{
struct sqr *s = &world[k];
#define c(f) (s->f == t->f)
// 4 types of blocks, to compress a bit:
// 255 (2): same as previous block + count
// 254 (3): same as previous, except light // deprecated
// SOLID (5)
// anything else (9)
|
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
setnames(mname);
gzFile f =
gzopen([cgzname cStringWithEncoding:OFLocale.encoding], "rb9");
if (!f) {
conoutf(@"could not read map %@", cgzname);
return;
}
gzread(f, &hdr, sizeof(header) - sizeof(int) * 16);
endianswap(&hdr.version, sizeof(int), 4);
if (strncmp(hdr.head, "CUBE", 4) != 0)
fatal(@"while reading map: header malformatted");
if (hdr.version > MAPVERSION)
fatal(@"this map requires a newer version of cube");
if (sfactor < SMALLEST_FACTOR || sfactor > LARGEST_FACTOR)
fatal(@"illegal map size");
if (hdr.version >= 4) {
gzread(f, &hdr.waterlevel, sizeof(int) * 16);
endianswap(&hdr.waterlevel, sizeof(int), 16);
} else {
hdr.waterlevel = -100000;
}
[ents removeAllObjects];
loopi(hdr.numents)
{
struct persistent_entity tmp;
gzread(f, &tmp, sizeof(persistent_entity));
endianswap(&tmp, sizeof(short), 4);
Entity *e = [Entity entity];
e.x = tmp.x;
e.y = tmp.y;
e.z = tmp.z;
e.attr1 = tmp.attr1;
|
|
|
|
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
setnames(mname);
gzFile f =
gzopen([cgzname cStringWithEncoding:OFLocale.encoding], "rb9");
if (!f) {
conoutf(@"could not read map %@", cgzname);
return;
}
gzread(f, &hdr, sizeof(struct header) - sizeof(int) * 16);
endianswap(&hdr.version, sizeof(int), 4);
if (strncmp(hdr.head, "CUBE", 4) != 0)
fatal(@"while reading map: header malformatted");
if (hdr.version > MAPVERSION)
fatal(@"this map requires a newer version of cube");
if (sfactor < SMALLEST_FACTOR || sfactor > LARGEST_FACTOR)
fatal(@"illegal map size");
if (hdr.version >= 4) {
gzread(f, &hdr.waterlevel, sizeof(int) * 16);
endianswap(&hdr.waterlevel, sizeof(int), 16);
} else {
hdr.waterlevel = -100000;
}
[ents removeAllObjects];
loopi(hdr.numents)
{
struct persistent_entity tmp;
gzread(f, &tmp, sizeof(struct persistent_entity));
endianswap(&tmp, sizeof(short), 4);
Entity *e = [Entity entity];
e.x = tmp.x;
e.y = tmp.y;
e.z = tmp.z;
e.attr1 = tmp.attr1;
|
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
|
e.attr1 = 32; // 12_03 and below
}
}
free(world);
setupworld(hdr.sfactor);
char texuse[256];
loopi(256) texuse[i] = 0;
sqr *t = NULL;
loopk(cubicsize)
{
sqr *s = &world[k];
int type = gzgetc(f);
switch (type) {
case 255: {
int n = gzgetc(f);
for (int i = 0; i < n; i++, k++)
memcpy(&world[k], t, sizeof(sqr));
k--;
break;
}
case 254: // only in MAPVERSION<=2
{
memcpy(s, t, sizeof(sqr));
s->r = s->g = s->b = gzgetc(f);
gzgetc(f);
break;
}
case SOLID: {
s->type = SOLID;
s->wtex = gzgetc(f);
|
|
|
|
|
|
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
|
e.attr1 = 32; // 12_03 and below
}
}
free(world);
setupworld(hdr.sfactor);
char texuse[256];
loopi(256) texuse[i] = 0;
struct sqr *t = NULL;
loopk(cubicsize)
{
struct sqr *s = &world[k];
int type = gzgetc(f);
switch (type) {
case 255: {
int n = gzgetc(f);
for (int i = 0; i < n; i++, k++)
memcpy(&world[k], t, sizeof(struct sqr));
k--;
break;
}
case 254: // only in MAPVERSION<=2
{
memcpy(s, t, sizeof(struct sqr));
s->r = s->g = s->b = gzgetc(f);
gzgetc(f);
break;
}
case SOLID: {
s->type = SOLID;
s->wtex = gzgetc(f);
|
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
if (!SOLID(s))
texuse[s->utex] = texuse[s->ftex] = texuse[s->ctex] = 1;
}
gzclose(f);
calclight();
settagareas();
int xs, ys;
loopi(256) if (texuse) lookuptexture(i, &xs, &ys);
conoutf(@"read map %@ (%d milliseconds)", cgzname,
SDL_GetTicks() - lastmillis);
conoutf(@"%s", hdr.maptitle);
startmap(mname);
loopl(256)
{
// can this be done smarter?
|
|
|
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
if (!SOLID(s))
texuse[s->utex] = texuse[s->ftex] = texuse[s->ctex] = 1;
}
gzclose(f);
calclight();
settagareas();
int xs, ys;
loopi(256) if (texuse[i]) lookuptexture(i, &xs, &ys);
conoutf(@"read map %@ (%d milliseconds)", cgzname,
SDL_GetTicks() - lastmillis);
conoutf(@"%s", hdr.maptitle);
startmap(mname);
loopl(256)
{
// can this be done smarter?
|