// worldocull.cpp: occlusion map and occlusion test
#include "cube.h"
#define NUMRAYS 512
float rdist[NUMRAYS];
bool ocull = true;
float odist = 256;
void toggleocull() { ocull = !ocull; };
COMMAND(toggleocull, ARG_NONE);
// constructs occlusion map: cast rays in all directions on the 2d plane and record distance.
// done exactly once per frame.
void computeraytable(float vx, float vy)
{
if(!ocull) return;
odist = getvar("fog")*1.5f;
float apitch = (float)fabs(player1->pitch);
float af = getvar("fov")/2+apitch/1.5f+3;
float byaw = (player1->yaw-90+af)/360*PI2;
float syaw = (player1->yaw-90-af)/360*PI2;
loopi(NUMRAYS)
{
float angle = i*PI2/NUMRAYS;
if((apitch>45 // must be bigger if fov>120
|| (angle<byaw && angle>syaw)
|| (angle<byaw-PI2 && angle>syaw-PI2)
|| (angle<byaw+PI2 && angle>syaw+PI2))
&& !OUTBORD(vx, vy)
&& !SOLID(S(fast_f2nat(vx), fast_f2nat(vy)))) // try to avoid tracing ray if outside of frustrum
{
float ray = i*8/(float)NUMRAYS;
float dx, dy;
if(ray>1 && ray<3) { dx = -(ray-2); dy = 1; }
else if(ray>=3 && ray<5) { dx = -1; dy = -(ray-4); }
else if(ray>=5 && ray<7) { dx = ray-6; dy = -1; }
else { dx = 1; dy = ray>4 ? ray-8 : ray; };
float sx = vx;
float sy = vy;
for(;;)
{
sx += dx;
sy += dy;
if(SOLID(S(fast_f2nat(sx), fast_f2nat(sy)))) // 90% of time spend in this function is on this line
{
rdist[i] = (float)(fabs(sx-vx)+fabs(sy-vy));
break;
};
};
}
else
{
rdist[i] = 2;
};
};
};
// test occlusion for a cube... one of the most computationally expensive functions in the engine
// as its done for every cube and entity, but its effect is more than worth it!
inline float ca(float x, float y) { return x>y ? y/x : 2-x/y; };
inline float ma(float x, float y) { return x==0 ? (y>0 ? 2 : -2) : y/x; };
int isoccluded(float vx, float vy, float cx, float cy, float csize) // v = viewer, c = cube to test
{
if(!ocull) return 0;
float nx = vx, ny = vy; // n = point on the border of the cube that is closest to v
if(nx<cx) nx = cx;
else if(nx>cx+csize) nx = cx+csize;
if(ny<cy) ny = cy;
else if(ny>cy+csize) ny = cy+csize;
float xdist = (float)fabs(nx-vx);
float ydist = (float)fabs(ny-vy);
if(xdist>odist || ydist>odist) return 2;
float dist = xdist+ydist-1; // 1 needed?
// ABC
// D E
// FGH
// - check middle cube? BG
// find highest and lowest angle in the occlusion map that this cube spans, based on its most left and right
// points on the border from the viewer pov... I see no easier way to do this than this silly code below
float h, l;
if(cx<=vx) // ABDFG
{
if(cx+csize<vx) // ADF
{
if(cy<=vy) // AD
{
if(cy+csize<vy) { h = ca(-(cx-vx), -(cy+csize-vy))+4; l = ca(-(cx+csize-vx), -(cy-vy))+4; } // A
else { h = ma(-(cx+csize-vx), -(cy+csize-vy))+4; l = ma(-(cx+csize-vx), -(cy-vy))+4; } // D
}
else { h = ca(cy+csize-vy, -(cx+csize-vx))+2; l = ca(cy-vy, -(cx-vx))+2; }; // F
}
else // BG
{
if(cy<=vy)
{
if(cy+csize<vy) { h = ma(-(cy+csize-vy), cx-vx)+6; l = ma(-(cy+csize-vy), cx+csize-vx)+6; } // B
else return 0;
}
else { h = ma(cy-vy, -(cx+csize-vx))+2; l = ma(cy-vy, -(cx-vx))+2; }; // G
};
}
else // CEH
{
if(cy<=vy) // CE
{
if(cy+csize<vy) { h = ca(-(cy-vy), cx-vx)+6; l = ca(-(cy+csize-vy), cx+csize-vx)+6; } // C
else { h = ma(cx-vx, cy-vy); l = ma(cx-vx, cy+csize-vy); }; // E
}
else { h = ca(cx+csize-vx, cy-vy); l = ca(cx-vx, cy+csize-vy); }; // H
};
int si = fast_f2nat(h*(NUMRAYS/8))+NUMRAYS; // get indexes into occlusion map from angles
int ei = fast_f2nat(l*(NUMRAYS/8))+NUMRAYS+1;
if(ei<=si) ei += NUMRAYS;
for(int i = si; i<=ei; i++)
{
if(dist<rdist[i&(NUMRAYS-1)]) return 0; // if any value in this segment of the occlusion map is further away then cube is not occluded
};
return 1; // cube is entirely occluded
};