// worldrender.cpp: goes through all cubes in top down quad tree fashion,
// determines what has to be rendered and how (depending on neighbouring cubes),
// then calls functions in rendercubes.cpp
#include "cube.h"
#import "DynamicEntity.h"
void
render_wall(struct sqr *o, struct sqr *s, int x1, int y1, int x2, int y2,
int mip, struct sqr *d1, struct sqr *d2, bool topleft)
{
if (SOLID(o) || o->type == SEMISOLID) {
float c1 = s->floor;
float c2 = s->floor;
if (s->type == FHF) {
c1 -= d1->vdelta / 4.0f;
c2 -= d2->vdelta / 4.0f;
}
float f1 = s->ceil;
float f2 = s->ceil;
if (s->type == CHF) {
f1 += d1->vdelta / 4.0f;
f2 += d2->vdelta / 4.0f;
}
// if(f1-c1<=0 && f2-c2<=0) return;
render_square(o->wtex, c1, c2, f1, f2, x1 << mip, y1 << mip,
x2 << mip, y2 << mip, 1 << mip, d1, d2, topleft);
return;
}
{
float f1 = s->floor;
float f2 = s->floor;
float c1 = o->floor;
float c2 = o->floor;
if (o->type == FHF && s->type != FHF) {
c1 -= d1->vdelta / 4.0f;
c2 -= d2->vdelta / 4.0f;
}
if (s->type == FHF && o->type != FHF) {
f1 -= d1->vdelta / 4.0f;
f2 -= d2->vdelta / 4.0f;
}
if (f1 >= c1 && f2 >= c2)
goto skip;
render_square(o->wtex, f1, f2, c1, c2, x1 << mip, y1 << mip,
x2 << mip, y2 << mip, 1 << mip, d1, d2, topleft);
}
skip: {
float f1 = o->ceil;
float f2 = o->ceil;
float c1 = s->ceil;
float c2 = s->ceil;
if (o->type == CHF && s->type != CHF) {
f1 += d1->vdelta / 4.0f;
f2 += d2->vdelta / 4.0f;
} else if (s->type == CHF && o->type != CHF) {
c1 += d1->vdelta / 4.0f;
c2 += d2->vdelta / 4.0f;
}
if (c1 <= f1 && c2 <= f2)
return;
render_square(o->utex, f1, f2, c1, c2, x1 << mip, y1 << mip, x2 << mip,
y2 << mip, 1 << mip, d1, d2, topleft);
}
}
const int MAX_MIP = 5; // 32x32 unit blocks
const int MIN_LOD = 2;
const int LOW_LOD = 25;
const int MAX_LOD = 1000;
int lod = 40, lodtop, lodbot, lodleft, lodright;
int min_lod;
int stats[LARGEST_FACTOR];
// detect those cases where a higher mip solid has a visible wall next to lower
// mip cubes (used for wall rendering below)
bool
issemi(int mip, int x, int y, int x1, int y1, int x2, int y2)
{
if (!(mip--))
return true;
struct sqr *w = wmip[mip];
int msize = ssize >> mip;
x *= 2;
y *= 2;
switch (SWS(w, x + x1, y + y1, msize)->type) {
case SEMISOLID:
if (issemi(mip, x + x1, y + y1, x1, y1, x2, y2))
return true;
case CORNER:
case SOLID:
break;
default:
return true;
}
switch (SWS(w, x + x2, y + y2, msize)->type) {
case SEMISOLID:
if (issemi(mip, x + x2, y + y2, x1, y1, x2, y2))
return true;
case CORNER:
case SOLID:
break;
default:
return true;
}
return false;
}
bool render_floor, render_ceil;
// the core recursive function, renders a rect of cubes at a certain mip level
// from a viewer perspective call itself for lower mip levels, on most modern
// machines however this function will use the higher mip levels only for
// perfect mips.
void
render_seg_new(
float vx, float vy, float vh, int mip, int x, int y, int xs, int ys)
{
struct sqr *w = wmip[mip];
int sz = ssize >> mip;
int vxx = ((int)vx + (1 << mip) / 2) >> mip;
int vyy = ((int)vy + (1 << mip) / 2) >> mip;
int lx =
vxx - lodleft; // these mark the rect inside the current rest that
// we want to render using a lower mip level
int ly = vyy - lodtop;
int rx = vxx + lodright;
int ry = vyy + lodbot;
float fsize = (float)(1 << mip);
for (int ox = x; ox < xs; ox++) {
// first collect occlusion information for this block
for (int oy = y; oy < ys; oy++) {
SWS(w, ox, oy, sz)->occluded =
isoccluded(player1.origin.x, player1.origin.y,
(float)(ox << mip), (float)(oy << mip), fsize);
}
}
int pvx = (int)vx >> mip;
int pvy = (int)vy >> mip;
if (pvx >= 0 && pvy >= 0 && pvx < sz && pvy < sz) {
// SWS(w,vxx,vyy,sz)->occluded = 0;
// player cell never occluded
SWS(w, pvx, pvy, sz)->occluded = 0;
}
#define df(x) s->floor - (x->vdelta / 4.0f)
#define dc(x) s->ceil + (x->vdelta / 4.0f)
// loop through the rect 3 times (for floor/ceil/walls seperately, to
// facilitate dynamic stripify) for each we skip occluded cubes
// (occlusion at higher mip levels is a big time saver!). during the
// first loop (ceil) we collect cubes that lie within the lower mip rect
// and are also deferred, and render them recursively. Anything left
// (perfect mips and higher lods) we render here.
#define LOOPH \
{ \
for (int xx = x; xx < xs; xx++) \
for (int yy = y; yy < ys; yy++) { \
struct sqr *s = SWS(w, xx, yy, sz); \
if (s->occluded == 1) \
continue; \
if (s->defer && !s->occluded && mip && \
xx >= lx && xx < rx && yy >= ly && \
yy < ry)
#define LOOPD \
struct sqr *t = SWS(s, 1, 0, sz); \
struct sqr *u = SWS(s, 1, 1, sz); \
struct sqr *v = SWS(s, 0, 1, sz);
LOOPH // ceils
{
int start = yy;
struct sqr *next;
while (yy < ys - 1 && (next = SWS(w, xx, yy + 1, sz))->defer &&
!next->occluded)
yy++; // collect 2xN rect of lower mip
render_seg_new(vx, vy, vh, mip - 1, xx * 2, start * 2,
xx * 2 + 2, yy * 2 + 2);
continue;
}
stats[mip]++;
LOOPD
if ((s->type == SPACE || s->type == FHF) && s->ceil >= vh &&
render_ceil)
render_flat(s->ctex, xx << mip, yy << mip, 1 << mip, s->ceil, s,
t, u, v, true);
if (s->type == CHF) // if(s->ceil>=vh)
render_flatdelta(s->ctex, xx << mip, yy << mip, 1 << mip, dc(s),
dc(t), dc(u), dc(v), s, t, u, v, true);
}
}
LOOPH continue; // floors
LOOPD
if ((s->type == SPACE || s->type == CHF) && s->floor <= vh && render_floor) {
render_flat(s->ftex, xx << mip, yy << mip, 1 << mip, s->floor, s, t, u,
v, false);
if (s->floor < hdr.waterlevel && !SOLID(s))
addwaterquad(xx << mip, yy << mip, 1 << mip);
}
if (s->type == FHF) {
render_flatdelta(s->ftex, xx << mip, yy << mip, 1 << mip, df(s), df(t),
df(u), df(v), s, t, u, v, false);
if (s->floor - s->vdelta / 4.0f < hdr.waterlevel && !SOLID(s))
addwaterquad(xx << mip, yy << mip, 1 << mip);
}
}
}
LOOPH continue; // walls
LOOPD
// w
// zSt
// vu
struct sqr *w = SWS(s, 0, -1, sz);
struct sqr *z = SWS(s, -1, 0, sz);
bool normalwall = true;
if (s->type == CORNER) {
// cull also
bool topleft = true;
struct sqr *h1 = NULL;
struct sqr *h2 = NULL;
if (SOLID(z)) {
if (SOLID(w)) {
render_wall(w, h2 = s, xx + 1, yy, xx, yy + 1, mip, t,
v, false);
topleft = false;
} else if (SOLID(v)) {
render_wall(v, h2 = s, xx, yy, xx + 1, yy + 1, mip, s,
u, false);
}
} else if (SOLID(t)) {
if (SOLID(w)) {
render_wall(w, h1 = s, xx + 1, yy + 1, xx, yy, mip, u,
s, false);
} else if (SOLID(v)) {
render_wall(v, h1 = s, xx, yy + 1, xx + 1, yy, mip, v,
t, false);
topleft = false;
}
} else {
normalwall = false;
bool wv = w->ceil - w->floor < v->ceil - v->floor;
if (z->ceil - z->floor < t->ceil - t->floor) {
if (wv) {
render_wall(h1 = s, h2 = v, xx + 1, yy, xx,
yy + 1, mip, t, v, false);
topleft = false;
} else {
render_wall(h1 = s, h2 = w, xx, yy, xx + 1,
yy + 1, mip, s, u, false);
}
} else {
if (wv) {
render_wall(h2 = s, h1 = v, xx + 1, yy + 1, xx,
yy, mip, u, s, false);
} else {
render_wall(h2 = s, h1 = w, xx, yy + 1, xx + 1,
yy, mip, v, t, false);
topleft = false;
}
}
}
render_tris(
xx << mip, yy << mip, 1 << mip, topleft, h1, h2, s, t, u, v);
}
if (normalwall) {
bool inner = xx != sz - 1 && yy != sz - 1;
if (xx >= vxx && xx != 0 && yy != sz - 1 && !SOLID(z) &&
(!SOLID(s) || z->type != CORNER) &&
(z->type != SEMISOLID || issemi(mip, xx - 1, yy, 1, 0, 1, 1)))
render_wall(s, z, xx, yy, xx, yy + 1, mip, s, v, true);
if (xx <= vxx && inner && !SOLID(t) &&
(!SOLID(s) || t->type != CORNER) &&
(t->type != SEMISOLID || issemi(mip, xx + 1, yy, 0, 0, 0, 1)))
render_wall(s, t, xx + 1, yy, xx + 1, yy + 1, mip, t, u, false);
if (yy >= vyy && yy != 0 && xx != sz - 1 && !SOLID(w) &&
(!SOLID(s) || w->type != CORNER) &&
(w->type != SEMISOLID || issemi(mip, xx, yy - 1, 0, 1, 1, 1)))
render_wall(s, w, xx, yy, xx + 1, yy, mip, s, t, false);
if (yy <= vyy && inner && !SOLID(v) &&
(!SOLID(s) || v->type != CORNER) &&
(v->type != SEMISOLID || issemi(mip, xx, yy + 1, 0, 0, 1, 0)))
render_wall(s, v, xx, yy + 1, xx + 1, yy + 1, mip, v, u, true);
}
}
}
}
static void
distlod(int *low, int *high, int angle, float widef)
{
float f = 90.0f / lod / widef;
*low = (int)((90 - angle) / f);
*high = (int)(angle / f);
if (*low < min_lod)
*low = min_lod;
if (*high < min_lod)
*high = min_lod;
}
// does some out of date view frustrum optimisation that doesn't contribute much
// anymore
void
render_world(
float vx, float vy, float vh, int yaw, int pitch, float fov, int w, int h)
{
loopi(LARGEST_FACTOR) stats[i] = 0;
min_lod = MIN_LOD + abs(pitch) / 12;
yaw = 360 - yaw;
float widef = fov / 75.0f;
int cdist = abs(yaw % 90 - 45);
// hack to avoid popup at high fovs at 45 yaw
if (cdist < 7) {
// less if lod worked better
min_lod =
max(min_lod, (int)(MIN_LOD + (10 - cdist) / 1.0f * widef));
widef = 1.0f;
}
lod = MAX_LOD;
lodtop = lodbot = lodleft = lodright = min_lod;
if (yaw > 45 && yaw <= 135) {
lodleft = lod;
distlod(&lodtop, &lodbot, yaw - 45, widef);
} else if (yaw > 135 && yaw <= 225) {
lodbot = lod;
distlod(&lodleft, &lodright, yaw - 135, widef);
} else if (yaw > 225 && yaw <= 315) {
lodright = lod;
distlod(&lodbot, &lodtop, yaw - 225, widef);
} else {
lodtop = lod;
distlod(&lodright, &lodleft, yaw <= 45 ? yaw + 45 : yaw - 315,
widef);
}
float hyfov = fov * h / w / 2;
render_floor = pitch < hyfov;
render_ceil = -pitch < hyfov;
render_seg_new(
vx, vy, vh, MAX_MIP, 0, 0, ssize >> MAX_MIP, ssize >> MAX_MIP);
mipstats(stats[0], stats[1], stats[2]);
}