1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
// worldrender.cpp: goes through all cubes in top down quad tree fashion, determines what has to
// be rendered and how (depending on neighbouring cubes), then calls functions in rendercubes.cpp
#include "cube.h"
void render_wall(sqr *o, sqr *s, int x1, int y1, int x2, int y2, int mip, sqr *d1, sqr *d2, bool topleft)
{
if(SOLID(o) || o->type==SEMISOLID)
{
float c1 = s->floor;
float c2 = s->floor;
if(s->type==FHF) { c1 -= d1->vdelta/4.0f; c2 -= d2->vdelta/4.0f; };
float f1 = s->ceil;
float f2 = s->ceil;
if(s->type==CHF) { f1 += d1->vdelta/4.0f; f2 += d2->vdelta/4.0f; };
//if(f1-c1<=0 && f2-c2<=0) return;
render_square(o->wtex, c1, c2, f1, f2, x1<<mip, y1<<mip, x2<<mip, y2<<mip, 1<<mip, d1, d2, topleft);
return;
};
{
float f1 = s->floor;
float f2 = s->floor;
float c1 = o->floor;
float c2 = o->floor;
if(o->type==FHF && s->type!=FHF)
{
c1 -= d1->vdelta/4.0f;
c2 -= d2->vdelta/4.0f;
}
if(s->type==FHF && o->type!=FHF)
{
f1 -= d1->vdelta/4.0f;
f2 -= d2->vdelta/4.0f;
}
if(f1>=c1 && f2>=c2) goto skip;
render_square(o->wtex, f1, f2, c1, c2, x1<<mip, y1<<mip, x2<<mip, y2<<mip, 1<<mip, d1, d2, topleft);
};
skip:
{
float f1 = o->ceil;
float f2 = o->ceil;
float c1 = s->ceil;
float c2 = s->ceil;
if(o->type==CHF && s->type!=CHF)
{
f1 += d1->vdelta/4.0f;
f2 += d2->vdelta/4.0f;
}
else if(s->type==CHF && o->type!=CHF)
{
c1 += d1->vdelta/4.0f;
c2 += d2->vdelta/4.0f;
}
if(c1<=f1 && c2<=f2) return;
render_square(o->utex, f1, f2, c1, c2, x1<<mip, y1<<mip, x2<<mip, y2<<mip, 1<<mip, d1, d2, topleft);
};
};
const int MAX_MIP = 5; // 32x32 unit blocks
const int MIN_LOD = 2;
const int LOW_LOD = 25;
const int MAX_LOD = 1000;
int lod = 40, lodtop, lodbot, lodleft, lodright;
int min_lod;
int stats[LARGEST_FACTOR];
// detect those cases where a higher mip solid has a visible wall next to lower mip cubes
// (used for wall rendering below)
bool issemi(int mip, int x, int y, int x1, int y1, int x2, int y2)
{
if(!(mip--)) return true;
sqr *w = wmip[mip];
int msize = ssize>>mip;
x *= 2;
y *= 2;
switch(SWS(w, x+x1, y+y1, msize)->type)
{
case SEMISOLID: if(issemi(mip, x+x1, y+y1, x1, y1, x2, y2)) return true;
case CORNER:
case SOLID: break;
default: return true;
};
switch(SWS(w, x+x2, y+y2, msize)->type)
{
case SEMISOLID: if(issemi(mip, x+x2, y+y2, x1, y1, x2, y2)) return true;
case CORNER:
case SOLID: break;
default: return true;
};
return false;
};
bool render_floor, render_ceil;
// the core recursive function, renders a rect of cubes at a certain mip level from a viewer perspective
// call itself for lower mip levels, on most modern machines however this function will use the higher
// mip levels only for perfect mips.
void render_seg_new(float vx, float vy, float vh, int mip, int x, int y, int xs, int ys)
{
sqr *w = wmip[mip];
int sz = ssize>>mip;
int vxx = ((int)vx+(1<<mip)/2)>>mip;
int vyy = ((int)vy+(1<<mip)/2)>>mip;
int lx = vxx-lodleft; // these mark the rect inside the current rest that we want to render using a lower mip level
int ly = vyy-lodtop;
int rx = vxx+lodright;
int ry = vyy+lodbot;
float fsize = (float)(1<<mip);
for(int ox = x; ox<xs; ox++) for(int oy = y; oy<ys; oy++) // first collect occlusion information for this block
{
SWS(w,ox,oy,sz)->occluded = isoccluded(player1->o.x, player1->o.y, (float)(ox<<mip), (float)(oy<<mip), fsize);
};
int pvx = (int)vx>>mip;
int pvy = (int)vy>>mip;
if(pvx>=0 && pvy>=0 && pvx<sz && pvy<sz)
{
//SWS(w,vxx,vyy,sz)->occluded = 0;
SWS(w, pvx, pvy, sz)->occluded = 0; // player cell never occluded
};
#define df(x) s->floor-(x->vdelta/4.0f)
#define dc(x) s->ceil+(x->vdelta/4.0f)
// loop through the rect 3 times (for floor/ceil/walls seperately, to facilitate dynamic stripify)
// for each we skip occluded cubes (occlusion at higher mip levels is a big time saver!).
// during the first loop (ceil) we collect cubes that lie within the lower mip rect and are
// also deferred, and render them recursively. Anything left (perfect mips and higher lods) we
// render here.
#define LOOPH {for(int xx = x; xx<xs; xx++) for(int yy = y; yy<ys; yy++) { \
sqr *s = SWS(w,xx,yy,sz); if(s->occluded==1) continue; \
if(s->defer && !s->occluded && mip && xx>=lx && xx<rx && yy>=ly && yy<ry)
#define LOOPD sqr *t = SWS(s,1,0,sz); \
sqr *u = SWS(s,1,1,sz); \
sqr *v = SWS(s,0,1,sz); \
LOOPH // ceils
{
int start = yy;
sqr *next;
while(yy<ys-1 && (next = SWS(w,xx,yy+1,sz))->defer && !next->occluded) yy++; // collect 2xN rect of lower mip
render_seg_new(vx, vy, vh, mip-1, xx*2, start*2, xx*2+2, yy*2+2);
continue;
};
stats[mip]++;
LOOPD
if((s->type==SPACE || s->type==FHF) && s->ceil>=vh && render_ceil)
render_flat(s->ctex, xx<<mip, yy<<mip, 1<<mip, s->ceil, s, t, u, v, true);
if(s->type==CHF) //if(s->ceil>=vh)
render_flatdelta(s->ctex, xx<<mip, yy<<mip, 1<<mip, dc(s), dc(t), dc(u), dc(v), s, t, u, v, true);
}};
LOOPH continue; // floors
LOOPD
if((s->type==SPACE || s->type==CHF) && s->floor<=vh && render_floor)
{
render_flat(s->ftex, xx<<mip, yy<<mip, 1<<mip, s->floor, s, t, u, v, false);
if(s->floor<hdr.waterlevel && !SOLID(s)) addwaterquad(xx<<mip, yy<<mip, 1<<mip);
};
if(s->type==FHF)
{
render_flatdelta(s->ftex, xx<<mip, yy<<mip, 1<<mip, df(s), df(t), df(u), df(v), s, t, u, v, false);
if(s->floor-s->vdelta/4.0f<hdr.waterlevel && !SOLID(s)) addwaterquad(xx<<mip, yy<<mip, 1<<mip);
};
}};
LOOPH continue; // walls
LOOPD
// w
// zSt
// vu
sqr *w = SWS(s,0,-1,sz);
sqr *z = SWS(s,-1,0,sz);
bool normalwall = true;
if(s->type==CORNER)
{
// cull also
bool topleft = true;
sqr *h1 = NULL;
sqr *h2 = NULL;
if(SOLID(z))
{
if(SOLID(w)) { render_wall(w, h2 = s, xx+1, yy, xx, yy+1, mip, t, v, false); topleft = false; }
else if(SOLID(v)) { render_wall(v, h2 = s, xx, yy, xx+1, yy+1, mip, s, u, false); };
}
else if(SOLID(t))
{
if(SOLID(w)) { render_wall(w, h1 = s, xx+1, yy+1, xx, yy, mip, u, s, false); }
else if(SOLID(v)) { render_wall(v, h1 = s, xx, yy+1, xx+1, yy, mip, v, t, false); topleft = false; };
}
else
{
normalwall = false;
bool wv = w->ceil-w->floor < v->ceil-v->floor;
if(z->ceil-z->floor < t->ceil-t->floor)
{
if(wv) { render_wall(h1 = s, h2 = v, xx+1, yy, xx, yy+1, mip, t, v, false); topleft = false; }
else { render_wall(h1 = s, h2 = w, xx, yy, xx+1, yy+1, mip, s, u, false); };
}
else
{
if(wv) { render_wall(h2 = s, h1 = v, xx+1, yy+1, xx, yy, mip, u, s, false); }
else { render_wall(h2 = s, h1 = w, xx, yy+1, xx+1, yy, mip, v, t, false); topleft = false; };
};
};
render_tris(xx<<mip, yy<<mip, 1<<mip, topleft, h1, h2, s, t, u, v);
}
if(normalwall)
{
bool inner = xx!=sz-1 && yy!=sz-1;
if(xx>=vxx && xx!=0 && yy!=sz-1 && !SOLID(z) && (!SOLID(s) || z->type!=CORNER)
&& (z->type!=SEMISOLID || issemi(mip, xx-1, yy, 1, 0, 1, 1)))
render_wall(s, z, xx, yy, xx, yy+1, mip, s, v, true);
if(xx<=vxx && inner && !SOLID(t) && (!SOLID(s) || t->type!=CORNER)
&& (t->type!=SEMISOLID || issemi(mip, xx+1, yy, 0, 0, 0, 1)))
render_wall(s, t, xx+1, yy, xx+1, yy+1, mip, t, u, false);
if(yy>=vyy && yy!=0 && xx!=sz-1 && !SOLID(w) && (!SOLID(s) || w->type!=CORNER)
&& (w->type!=SEMISOLID || issemi(mip, xx, yy-1, 0, 1, 1, 1)))
render_wall(s, w, xx, yy, xx+1, yy, mip, s, t, false);
if(yy<=vyy && inner && !SOLID(v) && (!SOLID(s) || v->type!=CORNER)
&& (v->type!=SEMISOLID || issemi(mip, xx, yy+1, 0, 0, 1, 0)))
render_wall(s, v, xx, yy+1, xx+1, yy+1, mip, v, u, true);
};
}};
};
void distlod(int &low, int &high, int angle, float widef)
{
float f = 90.0f/lod/widef;
low = (int)((90-angle)/f);
high = (int)(angle/f);
if(low<min_lod) low = min_lod;
if(high<min_lod) high = min_lod;
};
// does some out of date view frustrum optimisation that doesn't contribute much anymore
void render_world(float vx, float vy, float vh, int yaw, int pitch, float fov, int w, int h)
{
loopi(LARGEST_FACTOR) stats[i] = 0;
min_lod = MIN_LOD+abs(pitch)/12;
yaw = 360-yaw;
float widef = fov/75.0f;
int cdist = abs(yaw%90-45);
if(cdist<7) // hack to avoid popup at high fovs at 45 yaw
{
min_lod = max(min_lod, (int)(MIN_LOD+(10-cdist)/1.0f*widef)); // less if lod worked better
widef = 1.0f;
};
lod = MAX_LOD;
lodtop = lodbot = lodleft = lodright = min_lod;
if(yaw>45 && yaw<=135)
{
lodleft = lod;
distlod(lodtop, lodbot, yaw-45, widef);
}
else if(yaw>135 && yaw<=225)
{
lodbot = lod;
distlod(lodleft, lodright, yaw-135, widef);
}
else if(yaw>225 && yaw<=315)
{
lodright = lod;
distlod(lodbot, lodtop, yaw-225, widef);
}
else
{
lodtop = lod;
distlod(lodright, lodleft, yaw<=45 ? yaw+45 : yaw-315, widef);
};
float hyfov = fov*h/w/2;
render_floor = pitch<hyfov;
render_ceil = -pitch<hyfov;
render_seg_new(vx, vy, vh, MAX_MIP, 0, 0, ssize>>MAX_MIP, ssize>>MAX_MIP);
mipstats(stats[0], stats[1], stats[2]);
};
|
|
|
>
>
|
>
|
<
|
|
>
|
>
>
|
|
>
|
>
>
|
|
>
|
|
|
|
|
|
|
|
<
|
|
|
|
<
|
|
|
>
|
|
>
|
|
<
|
|
|
|
|
<
|
|
<
|
<
|
|
|
>
|
|
>
|
|
|
|
>
|
>
|
|
|
|
|
|
<
|
>
>
|
|
>
|
>
|
|
<
|
>
>
|
|
>
|
>
|
|
|
>
|
|
>
>
|
|
|
|
|
>
|
>
|
|
|
|
>
>
|
|
>
|
>
|
|
|
|
|
<
|
|
>
|
|
|
|
|
>
|
|
|
>
|
>
>
>
>
>
|
<
|
|
>
>
>
|
|
|
|
|
|
|
>
>
|
|
>
|
|
|
|
>
|
>
|
|
>
|
<
|
>
>
>
|
|
|
<
|
>
|
>
|
|
<
>
|
|
>
|
<
|
>
>
>
|
|
|
|
|
|
|
|
|
<
|
|
|
|
|
<
>
|
>
>
>
|
>
|
|
<
>
|
>
>
|
>
>
|
|
<
|
|
|
<
>
>
|
>
>
|
>
|
|
<
>
|
>
>
|
>
>
|
|
>
|
>
|
|
<
|
>
|
|
|
|
>
|
|
|
<
<
|
|
>
>
>
>
|
|
<
|
<
|
>
>
>
>
>
|
|
|
|
>
|
>
|
|
>
>
>
|
|
|
|
|
|
|
|
|
>
>
|
<
<
<
<
<
<
<
<
<
<
<
<
|
>
>
>
>
>
>
>
>
|
<
|
|
<
|
<
|
>
|
|
|
|
|
|
>
|
<
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
// worldrender.cpp: goes through all cubes in top down quad tree fashion,
// determines what has to be rendered and how (depending on neighbouring cubes),
// then calls functions in rendercubes.cpp
#include "cube.h"
void
render_wall(sqr *o, sqr *s, int x1, int y1, int x2, int y2, int mip, sqr *d1,
sqr *d2, bool topleft)
{
if (SOLID(o) || o->type == SEMISOLID) {
float c1 = s->floor;
float c2 = s->floor;
if (s->type == FHF) {
c1 -= d1->vdelta / 4.0f;
c2 -= d2->vdelta / 4.0f;
};
float f1 = s->ceil;
float f2 = s->ceil;
if (s->type == CHF) {
f1 += d1->vdelta / 4.0f;
f2 += d2->vdelta / 4.0f;
};
// if(f1-c1<=0 && f2-c2<=0) return;
render_square(o->wtex, c1, c2, f1, f2, x1 << mip, y1 << mip,
x2 << mip, y2 << mip, 1 << mip, d1, d2, topleft);
return;
};
{
float f1 = s->floor;
float f2 = s->floor;
float c1 = o->floor;
float c2 = o->floor;
if (o->type == FHF && s->type != FHF) {
c1 -= d1->vdelta / 4.0f;
c2 -= d2->vdelta / 4.0f;
}
if (s->type == FHF && o->type != FHF) {
f1 -= d1->vdelta / 4.0f;
f2 -= d2->vdelta / 4.0f;
}
if (f1 >= c1 && f2 >= c2)
goto skip;
render_square(o->wtex, f1, f2, c1, c2, x1 << mip, y1 << mip,
x2 << mip, y2 << mip, 1 << mip, d1, d2, topleft);
};
skip: {
float f1 = o->ceil;
float f2 = o->ceil;
float c1 = s->ceil;
float c2 = s->ceil;
if (o->type == CHF && s->type != CHF) {
f1 += d1->vdelta / 4.0f;
f2 += d2->vdelta / 4.0f;
} else if (s->type == CHF && o->type != CHF) {
c1 += d1->vdelta / 4.0f;
c2 += d2->vdelta / 4.0f;
}
if (c1 <= f1 && c2 <= f2)
return;
render_square(o->utex, f1, f2, c1, c2, x1 << mip, y1 << mip, x2 << mip,
y2 << mip, 1 << mip, d1, d2, topleft);
};
};
const int MAX_MIP = 5; // 32x32 unit blocks
const int MIN_LOD = 2;
const int LOW_LOD = 25;
const int MAX_LOD = 1000;
int lod = 40, lodtop, lodbot, lodleft, lodright;
int min_lod;
int stats[LARGEST_FACTOR];
// detect those cases where a higher mip solid has a visible wall next to lower
// mip cubes (used for wall rendering below)
bool
issemi(int mip, int x, int y, int x1, int y1, int x2, int y2)
{
if (!(mip--))
return true;
sqr *w = wmip[mip];
int msize = ssize >> mip;
x *= 2;
y *= 2;
switch (SWS(w, x + x1, y + y1, msize)->type) {
case SEMISOLID:
if (issemi(mip, x + x1, y + y1, x1, y1, x2, y2))
return true;
case CORNER:
case SOLID:
break;
default:
return true;
};
switch (SWS(w, x + x2, y + y2, msize)->type) {
case SEMISOLID:
if (issemi(mip, x + x2, y + y2, x1, y1, x2, y2))
return true;
case CORNER:
case SOLID:
break;
default:
return true;
};
return false;
};
bool render_floor, render_ceil;
// the core recursive function, renders a rect of cubes at a certain mip level
// from a viewer perspective call itself for lower mip levels, on most modern
// machines however this function will use the higher mip levels only for
// perfect mips.
void
render_seg_new(
float vx, float vy, float vh, int mip, int x, int y, int xs, int ys)
{
sqr *w = wmip[mip];
int sz = ssize >> mip;
int vxx = ((int)vx + (1 << mip) / 2) >> mip;
int vyy = ((int)vy + (1 << mip) / 2) >> mip;
int lx =
vxx - lodleft; // these mark the rect inside the current rest that
// we want to render using a lower mip level
int ly = vyy - lodtop;
int rx = vxx + lodright;
int ry = vyy + lodbot;
float fsize = (float)(1 << mip);
for (int ox = x; ox < xs; ox++)
for (int oy = y; oy < ys;
oy++) // first collect occlusion information for this block
{
SWS(w, ox, oy, sz)->occluded =
isoccluded(player1->o.x, player1->o.y,
(float)(ox << mip), (float)(oy << mip), fsize);
};
int pvx = (int)vx >> mip;
int pvy = (int)vy >> mip;
if (pvx >= 0 && pvy >= 0 && pvx < sz && pvy < sz) {
// SWS(w,vxx,vyy,sz)->occluded = 0;
SWS(w, pvx, pvy, sz)->occluded =
0; // player cell never occluded
};
#define df(x) s->floor - (x->vdelta / 4.0f)
#define dc(x) s->ceil + (x->vdelta / 4.0f)
// loop through the rect 3 times (for floor/ceil/walls seperately, to
// facilitate dynamic stripify) for each we skip occluded cubes
// (occlusion at higher mip levels is a big time saver!). during the
// first loop (ceil) we collect cubes that lie within the lower mip rect
// and are also deferred, and render them recursively. Anything left
// (perfect mips and higher lods) we render here.
#define LOOPH \
{ \
for (int xx = x; xx < xs; xx++) \
for (int yy = y; yy < ys; yy++) { \
sqr *s = SWS(w, xx, yy, sz); \
if (s->occluded == 1) \
continue; \
if (s->defer && !s->occluded && mip && \
xx >= lx && xx < rx && yy >= ly && \
yy < ry)
#define LOOPD \
sqr *t = SWS(s, 1, 0, sz); \
sqr *u = SWS(s, 1, 1, sz); \
sqr *v = SWS(s, 0, 1, sz);
LOOPH // ceils
{
int start = yy;
sqr *next;
while (yy < ys - 1 && (next = SWS(w, xx, yy + 1, sz))->defer &&
!next->occluded)
yy++; // collect 2xN rect of lower mip
render_seg_new(vx, vy, vh, mip - 1, xx * 2, start * 2,
xx * 2 + 2, yy * 2 + 2);
continue;
};
stats[mip]++;
LOOPD
if ((s->type == SPACE || s->type == FHF) && s->ceil >= vh &&
render_ceil)
render_flat(s->ctex, xx << mip, yy << mip, 1 << mip, s->ceil, s,
t, u, v, true);
if (s->type == CHF) // if(s->ceil>=vh)
render_flatdelta(s->ctex, xx << mip, yy << mip, 1 << mip, dc(s),
dc(t), dc(u), dc(v), s, t, u, v, true);
}
}
;
LOOPH continue; // floors
LOOPD
if ((s->type == SPACE || s->type == CHF) && s->floor <= vh && render_floor) {
render_flat(s->ftex, xx << mip, yy << mip, 1 << mip, s->floor, s, t, u,
v, false);
if (s->floor < hdr.waterlevel && !SOLID(s))
addwaterquad(xx << mip, yy << mip, 1 << mip);
};
if (s->type == FHF) {
render_flatdelta(s->ftex, xx << mip, yy << mip, 1 << mip, df(s), df(t),
df(u), df(v), s, t, u, v, false);
if (s->floor - s->vdelta / 4.0f < hdr.waterlevel && !SOLID(s))
addwaterquad(xx << mip, yy << mip, 1 << mip);
};
}
}
;
LOOPH continue; // walls
LOOPD
// w
// zSt
// vu
sqr *w = SWS(s, 0, -1, sz);
sqr *z = SWS(s, -1, 0, sz);
bool normalwall = true;
if (s->type == CORNER) {
// cull also
bool topleft = true;
sqr *h1 = NULL;
sqr *h2 = NULL;
if (SOLID(z)) {
if (SOLID(w)) {
render_wall(w, h2 = s, xx + 1, yy, xx, yy + 1, mip, t,
v, false);
topleft = false;
} else if (SOLID(v)) {
render_wall(v, h2 = s, xx, yy, xx + 1, yy + 1, mip, s,
u, false);
};
} else if (SOLID(t)) {
if (SOLID(w)) {
render_wall(w, h1 = s, xx + 1, yy + 1, xx, yy, mip, u,
s, false);
} else if (SOLID(v)) {
render_wall(v, h1 = s, xx, yy + 1, xx + 1, yy, mip, v,
t, false);
topleft = false;
};
} else {
normalwall = false;
bool wv = w->ceil - w->floor < v->ceil - v->floor;
if (z->ceil - z->floor < t->ceil - t->floor) {
if (wv) {
render_wall(h1 = s, h2 = v, xx + 1, yy, xx,
yy + 1, mip, t, v, false);
topleft = false;
} else {
render_wall(h1 = s, h2 = w, xx, yy, xx + 1,
yy + 1, mip, s, u, false);
};
} else {
if (wv) {
render_wall(h2 = s, h1 = v, xx + 1, yy + 1, xx,
yy, mip, u, s, false);
} else {
render_wall(h2 = s, h1 = w, xx, yy + 1, xx + 1,
yy, mip, v, t, false);
topleft = false;
};
};
};
render_tris(
xx << mip, yy << mip, 1 << mip, topleft, h1, h2, s, t, u, v);
}
if (normalwall) {
bool inner = xx != sz - 1 && yy != sz - 1;
if (xx >= vxx && xx != 0 && yy != sz - 1 && !SOLID(z) &&
(!SOLID(s) || z->type != CORNER) &&
(z->type != SEMISOLID || issemi(mip, xx - 1, yy, 1, 0, 1, 1)))
render_wall(s, z, xx, yy, xx, yy + 1, mip, s, v, true);
if (xx <= vxx && inner && !SOLID(t) &&
(!SOLID(s) || t->type != CORNER) &&
(t->type != SEMISOLID || issemi(mip, xx + 1, yy, 0, 0, 0, 1)))
render_wall(s, t, xx + 1, yy, xx + 1, yy + 1, mip, t, u, false);
if (yy >= vyy && yy != 0 && xx != sz - 1 && !SOLID(w) &&
(!SOLID(s) || w->type != CORNER) &&
(w->type != SEMISOLID || issemi(mip, xx, yy - 1, 0, 1, 1, 1)))
render_wall(s, w, xx, yy, xx + 1, yy, mip, s, t, false);
if (yy <= vyy && inner && !SOLID(v) &&
(!SOLID(s) || v->type != CORNER) &&
(v->type != SEMISOLID || issemi(mip, xx, yy + 1, 0, 0, 1, 0)))
render_wall(s, v, xx, yy + 1, xx + 1, yy + 1, mip, v, u, true);
};
}
}
;
}
;
void
distlod(int &low, int &high, int angle, float widef)
{
float f = 90.0f / lod / widef;
low = (int)((90 - angle) / f);
high = (int)(angle / f);
if (low < min_lod)
low = min_lod;
if (high < min_lod)
high = min_lod;
};
// does some out of date view frustrum optimisation that doesn't contribute much
// anymore
void
render_world(
float vx, float vy, float vh, int yaw, int pitch, float fov, int w, int h)
{
loopi(LARGEST_FACTOR) stats[i] = 0;
min_lod = MIN_LOD + abs(pitch) / 12;
yaw = 360 - yaw;
float widef = fov / 75.0f;
int cdist = abs(yaw % 90 - 45);
if (cdist < 7) // hack to avoid popup at high fovs at 45 yaw
{
min_lod = max(min_lod,
(int)(MIN_LOD + (10 - cdist) / 1.0f *
widef)); // less if lod worked better
widef = 1.0f;
};
lod = MAX_LOD;
lodtop = lodbot = lodleft = lodright = min_lod;
if (yaw > 45 && yaw <= 135) {
lodleft = lod;
distlod(lodtop, lodbot, yaw - 45, widef);
} else if (yaw > 135 && yaw <= 225) {
lodbot = lod;
distlod(lodleft, lodright, yaw - 135, widef);
} else if (yaw > 225 && yaw <= 315) {
lodright = lod;
distlod(lodbot, lodtop, yaw - 225, widef);
} else {
lodtop = lod;
distlod(
lodright, lodleft, yaw <= 45 ? yaw + 45 : yaw - 315, widef);
};
float hyfov = fov * h / w / 2;
render_floor = pitch < hyfov;
render_ceil = -pitch < hyfov;
render_seg_new(
vx, vy, vh, MAX_MIP, 0, 0, ssize >> MAX_MIP, ssize >> MAX_MIP);
mipstats(stats[0], stats[1], stats[2]);
};
|