Cube  Diff

Differences From Artifact [a8efb366f0]:

To Artifact [e446a76dd7]:


1
2
3
4

5
6
7

8

9

10
11
12
13


14

15
16

17

18
19

20
21
22
23
24

25

26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47

48
49
50

51
52
53

54


55

56
57
58
59
60
61
62
63

64

65
66

67

68
69
70
71
72
73
74
75
76



77

78
79

80
81
82
83
84
85
86
87
88
89
90
91


92

93
94
95
96

97
98








99

100
101



102
103
104
105
106


107

108

109

110
111
112
113
114
115
116
117






118

119
120

121

122

123
124
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141

142

143
144
145
146
147
148
149
150
151
152

153
154
155
156
157
158
159
160
161
162

163



164
165
166
167
168
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209


210
211
212
213

214
215
216
217
218





219
220
221
222
223
224
225

226

227
228
229
230
231
232
233
234
235



236


237
238
239
240
241
242
243
244
245







246

247
248
249
250
251
252
253
254





255


256


257
258
259
260
261
262
263
264
265

266
267
268


269

270
271
272
273



274
275
276
277
278
279



280
281
282
283
284
285
286
287
288
289

290


291
292
293
294

295
296
297
298
299
300
301
302
303
304
305
306
307

308

309
310
311
312
313

314


315
316
317
318

319
320
321


322
323
// physics.cpp: no physics books were hurt nor consulted in the construction of this code.
// All physics computations and constants were invented on the fly and simply tweaked until
// they "felt right", and have no basis in reality. Collision detection is simplistic but
// very robust (uses discrete steps at fixed fps).


#include "cube.h"


bool plcollide(dynent *d, dynent *o, float &headspace, float &hi, float &lo) // collide with player or monster

{

    if(o->state!=CS_ALIVE) return true;
    const float r = o->radius+d->radius;
    if(fabs(o->o.x-d->o.x)<r && fabs(o->o.y-d->o.y)<r) 
    {


        if(d->o.z-d->eyeheight<o->o.z-o->eyeheight) { if(o->o.z-o->eyeheight<hi) hi = o->o.z-o->eyeheight-1; }

        else if(o->o.z+o->aboveeye>lo) lo = o->o.z+o->aboveeye+1;
    

        if(fabs(o->o.z-d->o.z)<o->aboveeye+d->eyeheight) return false;

        if(d->monsterstate) return false; // hack
        headspace = d->o.z-o->o.z-o->aboveeye-d->eyeheight;

        if(headspace<0) headspace = 10;        
    };
    return true;
};


bool cornertest(int mip, int x, int y, int dx, int dy, int &bx, int &by, int &bs)    // recursively collide with a mipmapped corner cube

{
    sqr *w = wmip[mip];
    int sz = ssize>>mip;

    bool stest = SOLID(SWS(w, x+dx, y, sz)) && SOLID(SWS(w, x, y+dy, sz));
    mip++;
    x /= 2;
    y /= 2;
    if(SWS(wmip[mip], x, y, ssize>>mip)->type==CORNER)
    {
        bx = x<<mip;
        by = y<<mip;
        bs = 1<<mip;
        return cornertest(mip, x, y, dx, dy, bx, by, bs);
    };
    return stest;
};


void mmcollide(dynent *d, float &hi, float &lo)           // collide with a mapmodel
{
    loopv(ents)
    {
        entity &e = ents[i];

        if(e.type!=MAPMODEL) continue;
        mapmodelinfo &mmi = getmminfo(e.attr2);
        if(!&mmi || !mmi.h) continue;

        const float r = mmi.rad+d->radius;
        if(fabs(e.x-d->o.x)<r && fabs(e.y-d->o.y)<r)
        { 

            float mmz = (float)(S(e.x, e.y)->floor+mmi.zoff+e.attr3);


            if(d->o.z-d->eyeheight<mmz) { if(mmz<hi) hi = mmz; }

            else if(mmz+mmi.h>lo) lo = mmz+mmi.h;
        };
    };
};

// all collision happens here
// spawn is a dirty side effect used in spawning
// drop & rise are supplied by the physics below to indicate gravity/push for current mini-timestep



bool collide(dynent *d, bool spawn, float drop, float rise)
{

    const float fx1 = d->o.x-d->radius;     // figure out integer cube rectangle this entity covers in map

    const float fy1 = d->o.y-d->radius;
    const float fx2 = d->o.x+d->radius;
    const float fy2 = d->o.y+d->radius;
    const int x1 = fast_f2nat(fx1);
    const int y1 = fast_f2nat(fy1);
    const int x2 = fast_f2nat(fx2);
    const int y2 = fast_f2nat(fy2);
    float hi = 127, lo = -128;
    float minfloor = (d->monsterstate && !spawn && d->health>100) ? d->o.z-d->eyeheight-4.5f : -1000.0f;  // big monsters are afraid of heights, unless angry :)





    for(int x = x1; x<=x2; x++) for(int y = y1; y<=y2; y++)     // collide with map
    {

        if(OUTBORD(x,y)) return false;
        sqr *s = S(x,y);
        float ceil = s->ceil;
        float floor = s->floor;
        switch(s->type)
        {
            case SOLID:
                return false;

            case CORNER:
            {
                int bx = x, by = y, bs = 1;


                if(x==x1 && y==y1 && cornertest(0, x, y, -1, -1, bx, by, bs) && fx1-bx+fy1-by<=bs

                || x==x2 && y==y1 && cornertest(0, x, y,  1, -1, bx, by, bs) && fx2-bx>=fy1-by
                || x==x1 && y==y2 && cornertest(0, x, y, -1,  1, bx, by, bs) && fx1-bx<=fy2-by
                || x==x2 && y==y2 && cornertest(0, x, y,  1,  1, bx, by, bs) && fx2-bx+fy2-by>=bs)
                   return false;

                break;
            };










            case FHF:       // FIXME: too simplistic collision with slopes, makes it feels like tiny stairs
                floor -= (s->vdelta+S(x+1,y)->vdelta+S(x,y+1)->vdelta+S(x+1,y+1)->vdelta)/16.0f;



                break;

            case CHF:
                ceil += (s->vdelta+S(x+1,y)->vdelta+S(x,y+1)->vdelta+S(x+1,y+1)->vdelta)/16.0f;



        };

        if(ceil<hi) hi = ceil;

        if(floor>lo) lo = floor;

        if(floor<minfloor) return false;   
    };

    if(hi-lo < d->eyeheight+d->aboveeye) return false;

    float headspace = 10;
    loopv(players)       // collide with other players
    {






        dynent *o = players[i]; 

        if(!o || o==d) continue;
        if(!plcollide(d, o, headspace, hi, lo)) return false;

    };

    if(d!=player1) if(!plcollide(d, player1, headspace, hi, lo)) return false;

    dvector &v = getmonsters();
    // this loop can be a performance bottleneck with many monster on a slow cpu,
    // should replace with a blockmap but seems mostly fast enough

    loopv(v) if(!vreject(d->o, v[i]->o, 7.0f) && d!=v[i] && !plcollide(d, v[i], headspace, hi, lo)) return false; 
    headspace -= 0.01f;
    
    mmcollide(d, hi, lo);    // collide with map models

    if(spawn)
    {
        d->o.z = lo+d->eyeheight;       // just drop to floor (sideeffect)
        d->onfloor = true;
    }
    else
    {
        const float space = d->o.z-d->eyeheight-lo;
        if(space<0)
        {

            if(space>-0.01) d->o.z = lo+d->eyeheight;   // stick on step

            else if(space>-1.26f) d->o.z += rise;       // rise thru stair

            else return false;
        }
        else
        {
            d->o.z -= min(min(drop, space), headspace);       // gravity
        };

        const float space2 = hi-(d->o.z+d->aboveeye);
        if(space2<0)
        {

            if(space2<-0.1) return false;     // hack alert!
            d->o.z = hi-d->aboveeye;          // glue to ceiling
            d->vel.z = 0;                     // cancel out jumping velocity
        };

        d->onfloor = d->o.z-d->eyeheight-lo<0.001f;
    };
    return true;
}


float rad(float x) { return x*3.14159f/180; };




VARP(maxroll, 0, 3, 20);

int physicsfraction = 0, physicsrepeat = 0;
const int MINFRAMETIME = 20; // physics always simulated at 50fps or better


void physicsframe()          // optimally schedule physics frames inside the graphics frames
{
    if(curtime>=MINFRAMETIME)
    {
        int faketime = curtime+physicsfraction;
        physicsrepeat = faketime/MINFRAMETIME;
        physicsfraction = faketime-physicsrepeat*MINFRAMETIME;
    }
    else
    {
        physicsrepeat = 1;
    };
};

// main physics routine, moves a player/monster for a curtime step
// moveres indicated the physics precision (which is lower for monsters and multiplayer prediction)
// local is false for multiplayer prediction


void moveplayer(dynent *pl, int moveres, bool local, int curtime)
{
    const bool water = hdr.waterlevel>pl->o.z-0.5f;
    const bool floating = (editmode && local) || pl->state==CS_EDITING;

    vec d;      // vector of direction we ideally want to move in

    d.x = (float)(pl->move*cos(rad(pl->yaw-90)));
    d.y = (float)(pl->move*sin(rad(pl->yaw-90)));
    d.z = 0;

    if(floating || water)
    {
        d.x *= (float)cos(rad(pl->pitch));
        d.y *= (float)cos(rad(pl->pitch));
        d.z = (float)(pl->move*sin(rad(pl->pitch)));
    };

    d.x += (float)(pl->strafe*cos(rad(pl->yaw-180)));
    d.y += (float)(pl->strafe*sin(rad(pl->yaw-180)));

    const float speed = curtime/(water ? 2000.0f : 1000.0f)*pl->maxspeed;


    const float friction = water ? 20.0f : (pl->onfloor || floating ? 6.0f : 30.0f);

    const float fpsfric = friction/curtime*20.0f;   
    

    vmul(pl->vel, fpsfric-1);   // slowly apply friction and direction to velocity, gives a smooth movement
    vadd(pl->vel, d);
    vdiv(pl->vel, fpsfric);
    d = pl->vel;
    vmul(d, speed);             // d is now frametime based velocity vector






    pl->blocked = false;
    pl->moving = true;

    if(floating)                // just apply velocity
    {
        vadd(pl->o, d);

        if(pl->jumpnext) { pl->jumpnext = false; pl->vel.z = 2;    }

    }
    else                        // apply velocity with collision
    {
        if(pl->onfloor || water)
        {
            if(pl->jumpnext)
            {
                pl->jumpnext = false;
                pl->vel.z = 1.7f;       // physics impulse upwards



                if(water) { pl->vel.x /= 8; pl->vel.y /= 8; };      // dampen velocity change even harder, gives correct water feel


                if(local) playsoundc(S_JUMP);
                else if(pl->monsterstate) playsound(S_JUMP, &pl->o);
            }
            else if(pl->timeinair>800)  // if we land after long time must have been a high jump, make thud sound
            {
                if(local) playsoundc(S_LAND);
                else if(pl->monsterstate) playsound(S_LAND, &pl->o);
            };
            pl->timeinair = 0;







        }

        else
        {
            pl->timeinair += curtime;
        };

        const float gravity = 20;
        const float f = 1.0f/moveres;
        float dropf = ((gravity-1)+pl->timeinair/15.0f);        // incorrect, but works fine





        if(water) { dropf = 5; pl->timeinair = 0; };            // float slowly down in water


        const float drop = dropf*curtime/gravity/100/moveres;   // at high fps, gravity kicks in too fast


        const float rise = speed/moveres/1.2f;                  // extra smoothness when lifting up stairs

        loopi(moveres)                                          // discrete steps collision detection & sliding
        {
            // try move forward
            pl->o.x += f*d.x;
            pl->o.y += f*d.y;
            pl->o.z += f*d.z;
            if(collide(pl, false, drop, rise)) continue;                     

            // player stuck, try slide along y axis
            pl->blocked = true;
            pl->o.x -= f*d.x;


            if(collide(pl, false, drop, rise)) { d.x = 0; continue; };   

            pl->o.x += f*d.x;
            // still stuck, try x axis
            pl->o.y -= f*d.y;
            if(collide(pl, false, drop, rise)) { d.y = 0; continue; };       



            pl->o.y += f*d.y;
            // try just dropping down
            pl->moving = false;
            pl->o.x -= f*d.x;
            pl->o.y -= f*d.y;
            if(collide(pl, false, drop, rise)) { d.y = d.x = 0; continue; }; 



            pl->o.z -= f*d.z;
            break;
        };
    };

    // detect wether player is outside map, used for skipping zbuffer clear mostly

    if(pl->o.x < 0 || pl->o.x >= ssize || pl->o.y <0 || pl->o.y > ssize)
    {
        pl->outsidemap = true;

    }


    else
    {
        sqr *s = S((int)pl->o.x, (int)pl->o.y);
        pl->outsidemap = SOLID(s)

           || pl->o.z < s->floor - (s->type==FHF ? s->vdelta/4 : 0)
           || pl->o.z > s->ceil  + (s->type==CHF ? s->vdelta/4 : 0);
    };
    
    // automatically apply smooth roll when strafing

    if(pl->strafe==0) 
    {
        pl->roll = pl->roll/(1+(float)sqrt((float)curtime)/25);
    }
    else
    {
        pl->roll += pl->strafe*curtime/-30.0f;

        if(pl->roll>maxroll) pl->roll = (float)maxroll;

        if(pl->roll<-maxroll) pl->roll = (float)-maxroll;
    };
    
    // play sounds on water transitions
    

    if(!pl->inwater && water) { playsound(S_SPLASH2, &pl->o); pl->vel.z = 0; }


    else if(pl->inwater && !water) playsound(S_SPLASH1, &pl->o);
    pl->inwater = water;
};


void moveplayer(dynent *pl, int moveres, bool local)
{
    loopi(physicsrepeat) moveplayer(pl, moveres, local, i ? curtime/physicsrepeat : curtime-curtime/physicsrepeat*(physicsrepeat-1));


};

|
|
|
|
>



>
|
>

>
|
|
|
<
>
>
|
>
|
|
>
|
>
|
|
>
|
|
|


>
|
>

|
|
>
|
|
|
|
|
<
|
|
|
|
|
|


>
|

|
|
|
>
|
|
|
>
|
|
<
>
|
>
>
|
>
|
|
|




|
>

>
|

>
|
>
|
|
|
|
|
|
|
|
|
>
>
>

>
|
|
>
|
|
|
|
|
<
|
|

|
<
|
>
>
|
>
|
|
|
|
>
|
<
>
>
>
>
>
>
>
>

>
|
|
>
>
>
|

|
|
|
>
>
|
>
|
>
|
>
|
|
<
<
<
<
<
|
>
>
>
>
>
>
|
>
|
|
>
|
>
|
>
|
|
|
>
|
|
|
|

|
<
|
|
<
|
<
|
|
<
>
|
>
|
>
|
<
|
<
|
|

|
|
<
>
|
|
|
|

|
|
|


>
|
>
>
>






>
|

|
<
|
|
|
<
|
<
|
|



|
|

>
|

|
|

|

|
|
|

|
<
|
|
|
|

|
|

|
>
>
|

|
|
>
|
|
|
|
|
>
>
>
>
>
|
<
<
<
<
<
|
>
|
>
|
|
|
|
<
|
<
|
|
>
>
>
|
>
>
|
|
<
<
<
|
<
<
|
>
>
>
>
>
>
>
|
>
|
<
|
|

|
|
|
>
>
>
>
>
|
>
>
|
>
>
|

|
|
|
|
|
|
|
>
|
|
|
>
>
|
>
|
|
|
|
>
>
>
|
|
|
|
|
|
>
>
>
|
|
|
|
<
<
<
<
|
|
>
|
>
>
|
<
|
|
>
|
|
|
|
|

|
<
|
<
|
<
|
>
|
>
|
|
|
|
|
>
|
>
>
|
|


>
|

|
>
>

<
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111
112
113
114

115
116
117
118
119
120
121
122
123
124
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155





156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182
183

184

185
186

187
188
189
190
191
192

193

194
195
196
197
198

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

225
226
227

228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276





277
278
279
280
281
282
283
284

285

286
287
288
289
290
291
292
293
294
295



296


297
298
299
300
301
302
303
304
305
306
307

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361




362
363
364
365
366
367
368

369
370
371
372
373
374
375
376
377
378

379

380

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

// physics.cpp: no physics books were hurt nor consulted in the construction of
// this code. All physics computations and constants were invented on the fly
// and simply tweaked until they "felt right", and have no basis in reality.
// Collision detection is simplistic but very robust (uses discrete steps at
// fixed fps).

#include "cube.h"

bool
plcollide(dynent *d, dynent *o, float &headspace, float &hi,
    float &lo) // collide with player or monster
{
	if (o->state != CS_ALIVE)
		return true;
	const float r = o->radius + d->radius;
	if (fabs(o->o.x - d->o.x) < r && fabs(o->o.y - d->o.y) < r) {

		if (d->o.z - d->eyeheight < o->o.z - o->eyeheight) {
			if (o->o.z - o->eyeheight < hi)
				hi = o->o.z - o->eyeheight - 1;
		} else if (o->o.z + o->aboveeye > lo)
			lo = o->o.z + o->aboveeye + 1;

		if (fabs(o->o.z - d->o.z) < o->aboveeye + d->eyeheight)
			return false;
		if (d->monsterstate)
			return false; // hack
		headspace = d->o.z - o->o.z - o->aboveeye - d->eyeheight;
		if (headspace < 0)
			headspace = 10;
	};
	return true;
};

bool
cornertest(int mip, int x, int y, int dx, int dy, int &bx, int &by,
    int &bs) // recursively collide with a mipmapped corner cube
{
	sqr *w = wmip[mip];
	int sz = ssize >> mip;
	bool stest =
	    SOLID(SWS(w, x + dx, y, sz)) && SOLID(SWS(w, x, y + dy, sz));
	mip++;
	x /= 2;
	y /= 2;
	if (SWS(wmip[mip], x, y, ssize >> mip)->type == CORNER) {

		bx = x << mip;
		by = y << mip;
		bs = 1 << mip;
		return cornertest(mip, x, y, dx, dy, bx, by, bs);
	};
	return stest;
};

void
mmcollide(dynent *d, float &hi, float &lo) // collide with a mapmodel
{
	loopv(ents)
	{
		entity &e = ents[i];
		if (e.type != MAPMODEL)
			continue;
		mapmodelinfo &mmi = getmminfo(e.attr2);
		if (!&mmi || !mmi.h)
			continue;
		const float r = mmi.rad + d->radius;
		if (fabs(e.x - d->o.x) < r && fabs(e.y - d->o.y) < r) {

			float mmz =
			    (float)(S(e.x, e.y)->floor + mmi.zoff + e.attr3);
			if (d->o.z - d->eyeheight < mmz) {
				if (mmz < hi)
					hi = mmz;
			} else if (mmz + mmi.h > lo)
				lo = mmz + mmi.h;
		};
	};
};

// all collision happens here
// spawn is a dirty side effect used in spawning
// drop & rise are supplied by the physics below to indicate gravity/push for
// current mini-timestep

bool
collide(dynent *d, bool spawn, float drop, float rise)
{
	const float fx1 =
	    d->o.x - d->radius; // figure out integer cube rectangle this entity
	                        // covers in map
	const float fy1 = d->o.y - d->radius;
	const float fx2 = d->o.x + d->radius;
	const float fy2 = d->o.y + d->radius;
	const int x1 = fast_f2nat(fx1);
	const int y1 = fast_f2nat(fy1);
	const int x2 = fast_f2nat(fx2);
	const int y2 = fast_f2nat(fy2);
	float hi = 127, lo = -128;
	float minfloor = (d->monsterstate && !spawn && d->health > 100)
	                     ? d->o.z - d->eyeheight - 4.5f
	                     : -1000.0f; // big monsters are afraid of heights,
	                                 // unless angry :)

	for (int x = x1; x <= x2; x++)
		for (int y = y1; y <= y2; y++) // collide with map
		{
			if (OUTBORD(x, y))
				return false;
			sqr *s = S(x, y);
			float ceil = s->ceil;
			float floor = s->floor;
			switch (s->type) {

			case SOLID:
				return false;

			case CORNER: {

				int bx = x, by = y, bs = 1;
				if (x == x1 && y == y1 &&
				        cornertest(
				            0, x, y, -1, -1, bx, by, bs) &&
				        fx1 - bx + fy1 - by <= bs ||
				    x == x2 && y == y1 &&
				        cornertest(
				            0, x, y, 1, -1, bx, by, bs) &&
				        fx2 - bx >= fy1 - by ||
				    x == x1 && y == y2 &&
				        cornertest(

				            0, x, y, -1, 1, bx, by, bs) &&
				        fx1 - bx <= fy2 - by ||
				    x == x2 && y == y2 &&
				        cornertest(0, x, y, 1, 1, bx, by, bs) &&
				        fx2 - bx + fy2 - by >= bs)
					return false;
				break;
			};

			case FHF: // FIXME: too simplistic collision with
			          // slopes, makes it feels like tiny stairs
				floor -= (s->vdelta + S(x + 1, y)->vdelta +
				             S(x, y + 1)->vdelta +
				             S(x + 1, y + 1)->vdelta) /
				         16.0f;
				break;

			case CHF:
				ceil += (s->vdelta + S(x + 1, y)->vdelta +
				            S(x, y + 1)->vdelta +
				            S(x + 1, y + 1)->vdelta) /
				        16.0f;
			};
			if (ceil < hi)
				hi = ceil;
			if (floor > lo)
				lo = floor;
			if (floor < minfloor)
				return false;
		};






	if (hi - lo < d->eyeheight + d->aboveeye)
		return false;

	float headspace = 10;
	loopv(players) // collide with other players
	{
		dynent *o = players[i];
		if (!o || o == d)
			continue;
		if (!plcollide(d, o, headspace, hi, lo))
			return false;
	};
	if (d != player1)
		if (!plcollide(d, player1, headspace, hi, lo))
			return false;
	dvector &v = getmonsters();
	// this loop can be a performance bottleneck with many monster on a slow
	// cpu, should replace with a blockmap but seems mostly fast enough
	loopv(v) if (!vreject(d->o, v[i]->o, 7.0f) && d != v[i] &&
	             !plcollide(d, v[i], headspace, hi, lo)) return false;
	headspace -= 0.01f;

	mmcollide(d, hi, lo); // collide with map models

	if (spawn) {

		d->o.z = lo + d->eyeheight; // just drop to floor (sideeffect)
		d->onfloor = true;

	} else {

		const float space = d->o.z - d->eyeheight - lo;
		if (space < 0) {

			if (space > -0.01)
				d->o.z = lo + d->eyeheight; // stick on step
			else if (space > -1.26f)
				d->o.z += rise; // rise thru stair
			else
				return false;

		} else {

			d->o.z -= min(min(drop, space), headspace); // gravity
		};

		const float space2 = hi - (d->o.z + d->aboveeye);
		if (space2 < 0) {

			if (space2 < -0.1)
				return false;      // hack alert!
			d->o.z = hi - d->aboveeye; // glue to ceiling
			d->vel.z = 0; // cancel out jumping velocity
		};

		d->onfloor = d->o.z - d->eyeheight - lo < 0.001f;
	};
	return true;
}

float
rad(float x)
{
	return x * 3.14159f / 180;
};

VARP(maxroll, 0, 3, 20);

int physicsfraction = 0, physicsrepeat = 0;
const int MINFRAMETIME = 20; // physics always simulated at 50fps or better

void
physicsframe() // optimally schedule physics frames inside the graphics frames
{
	if (curtime >= MINFRAMETIME) {

		int faketime = curtime + physicsfraction;
		physicsrepeat = faketime / MINFRAMETIME;
		physicsfraction = faketime - physicsrepeat * MINFRAMETIME;

	} else {

		physicsrepeat = 1;
	};
};

// main physics routine, moves a player/monster for a curtime step
// moveres indicated the physics precision (which is lower for monsters and
// multiplayer prediction) local is false for multiplayer prediction

void
moveplayer(dynent *pl, int moveres, bool local, int curtime)
{
	const bool water = hdr.waterlevel > pl->o.z - 0.5f;
	const bool floating = (editmode && local) || pl->state == CS_EDITING;

	vec d; // vector of direction we ideally want to move in

	d.x = (float)(pl->move * cos(rad(pl->yaw - 90)));
	d.y = (float)(pl->move * sin(rad(pl->yaw - 90)));
	d.z = 0;

	if (floating || water) {

		d.x *= (float)cos(rad(pl->pitch));
		d.y *= (float)cos(rad(pl->pitch));
		d.z = (float)(pl->move * sin(rad(pl->pitch)));
	};

	d.x += (float)(pl->strafe * cos(rad(pl->yaw - 180)));
	d.y += (float)(pl->strafe * sin(rad(pl->yaw - 180)));

	const float speed =
	    curtime / (water ? 2000.0f : 1000.0f) * pl->maxspeed;
	const float friction =
	    water ? 20.0f : (pl->onfloor || floating ? 6.0f : 30.0f);

	const float fpsfric = friction / curtime * 20.0f;

	vmul(pl->vel, fpsfric - 1); // slowly apply friction and direction to
	                            // velocity, gives a smooth movement
	vadd(pl->vel, d);
	vdiv(pl->vel, fpsfric);
	d = pl->vel;
	vmul(d, speed); // d is now frametime based velocity vector

	pl->blocked = false;
	pl->moving = true;

	if (floating) // just apply velocity
	{





		vadd(pl->o, d);
		if (pl->jumpnext) {
			pl->jumpnext = false;
			pl->vel.z = 2;
		}
	} else // apply velocity with collision
	{
		if (pl->onfloor || water) {

			if (pl->jumpnext) {

				pl->jumpnext = false;
				pl->vel.z = 1.7f; // physics impulse upwards
				if (water) {
					pl->vel.x /= 8;
					pl->vel.y /= 8;
				}; // dampen velocity change even harder, gives
				   // correct water feel
				if (local)
					playsoundc(S_JUMP);
				else if (pl->monsterstate)



					playsound(S_JUMP, &pl->o);


			} else if (pl->timeinair >
			           800) // if we land after long time must have
			                // been a high jump, make thud sound
			{
				if (local)
					playsoundc(S_LAND);
				else if (pl->monsterstate)
					playsound(S_LAND, &pl->o);
			};
			pl->timeinair = 0;
		} else {

			pl->timeinair += curtime;
		};

		const float gravity = 20;
		const float f = 1.0f / moveres;
		float dropf =
		    ((gravity - 1) +
		        pl->timeinair / 15.0f); // incorrect, but works fine
		if (water) {
			dropf = 5;
			pl->timeinair = 0;
		}; // float slowly down in water
		const float drop =
		    dropf * curtime / gravity / 100 /
		    moveres; // at high fps, gravity kicks in too fast
		const float rise =
		    speed / moveres /
		    1.2f; // extra smoothness when lifting up stairs

		loopi(moveres) // discrete steps collision detection & sliding
		{
			// try move forward
			pl->o.x += f * d.x;
			pl->o.y += f * d.y;
			pl->o.z += f * d.z;
			if (collide(pl, false, drop, rise))
				continue;
			// player stuck, try slide along y axis
			pl->blocked = true;
			pl->o.x -= f * d.x;
			if (collide(pl, false, drop, rise)) {
				d.x = 0;
				continue;
			};
			pl->o.x += f * d.x;
			// still stuck, try x axis
			pl->o.y -= f * d.y;
			if (collide(pl, false, drop, rise)) {
				d.y = 0;
				continue;
			};
			pl->o.y += f * d.y;
			// try just dropping down
			pl->moving = false;
			pl->o.x -= f * d.x;
			pl->o.y -= f * d.y;
			if (collide(pl, false, drop, rise)) {
				d.y = d.x = 0;
				continue;
			};
			pl->o.z -= f * d.z;
			break;
		};
	};





	// detect wether player is outside map, used for skipping zbuffer clear
	// mostly

	if (pl->o.x < 0 || pl->o.x >= ssize || pl->o.y < 0 || pl->o.y > ssize) {
		pl->outsidemap = true;
	} else {

		sqr *s = S((int)pl->o.x, (int)pl->o.y);
		pl->outsidemap =
		    SOLID(s) ||
		    pl->o.z < s->floor - (s->type == FHF ? s->vdelta / 4 : 0) ||
		    pl->o.z > s->ceil + (s->type == CHF ? s->vdelta / 4 : 0);
	};

	// automatically apply smooth roll when strafing

	if (pl->strafe == 0) {

		pl->roll = pl->roll / (1 + (float)sqrt((float)curtime) / 25);

	} else {

		pl->roll += pl->strafe * curtime / -30.0f;
		if (pl->roll > maxroll)
			pl->roll = (float)maxroll;
		if (pl->roll < -maxroll)
			pl->roll = (float)-maxroll;
	};

	// play sounds on water transitions

	if (!pl->inwater && water) {
		playsound(S_SPLASH2, &pl->o);
		pl->vel.z = 0;
	} else if (pl->inwater && !water)
		playsound(S_SPLASH1, &pl->o);
	pl->inwater = water;
};

void
moveplayer(dynent *pl, int moveres, bool local)
{
	loopi(physicsrepeat) moveplayer(pl, moveres, local,
	    i ? curtime / physicsrepeat
	      : curtime - curtime / physicsrepeat * (physicsrepeat - 1));
};