Cube  Diff

Differences From Artifact [a7de71ad12]:

To Artifact [2e489013a3]:


34
35
36
37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
	float syaw = (player1.yaw - 90 - af) / 360 * PI2;

	for (int i = 0; i < NUMRAYS; i++) {
		float angle = i * PI2 / NUMRAYS;
		// try to avoid tracing ray if outside of frustrum
		// apitch must be bigger if fov > 120
		if ((apitch > 45 || (angle < byaw && angle > syaw) ||
		        (angle < byaw - PI2 && angle > syaw - PI2) ||
		        (angle < byaw + PI2 && angle > syaw + PI2)) &&
		    !OUTBORD(vx, vy) && !SOLID(S((int)vx, (int)vy))) {
			float ray = i * 8 / (float)NUMRAYS;
			float dx, dy;

			if (ray > 1 && ray < 3) {
				dx = -(ray - 2);
				dy = 1;
			} else if (ray >= 3 && ray < 5) {
				dx = -1;
				dy = -(ray - 4);
			} else if (ray >= 5 && ray < 7) {
				dx = ray - 6;
				dy = -1;
			} else {
				dx = 1;
				dy = ray > 4 ? ray - 8 : ray;
			}

			float sx = vx;
			float sy = vy;
			for (;;) {
				sx += dx;
				sy += dy;
				// 90% of time spend in this function is on this
				// line







|
|



>













>







34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
	float syaw = (player1.yaw - 90 - af) / 360 * PI2;

	for (int i = 0; i < NUMRAYS; i++) {
		float angle = i * PI2 / NUMRAYS;
		// try to avoid tracing ray if outside of frustrum
		// apitch must be bigger if fov > 120
		if ((apitch > 45 || (angle < byaw && angle > syaw) ||
		    (angle < byaw - PI2 && angle > syaw - PI2) ||
		    (angle < byaw + PI2 && angle > syaw + PI2)) &&
		    !OUTBORD(vx, vy) && !SOLID(S((int)vx, (int)vy))) {
			float ray = i * 8 / (float)NUMRAYS;
			float dx, dy;

			if (ray > 1 && ray < 3) {
				dx = -(ray - 2);
				dy = 1;
			} else if (ray >= 3 && ray < 5) {
				dx = -1;
				dy = -(ray - 4);
			} else if (ray >= 5 && ray < 7) {
				dx = ray - 6;
				dy = -1;
			} else {
				dx = 1;
				dy = ray > 4 ? ray - 8 : ray;
			}

			float sx = vx;
			float sy = vy;
			for (;;) {
				sx += dx;
				sy += dy;
				// 90% of time spend in this function is on this
				// line
121
122
123
124
125
126
127
128
129

130
131

132
133

134

135
136
137
138
139
140

141
142
143
144
145
146

147

148
149

150
151
152
153

154
155
156
157
158
159
160
161

162
163
164
165

166
167

168
169

170

171
172
173
174

175
176
177

178

179
180
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

	// find highest and lowest angle in the occlusion map that this cube
	// spans, based on its most left and right points on the border from the
	// viewer pov... I see no easier way to do this than this silly code
	// below

	float h, l;
	if (cx <= vx) // ABDFG
	{

		if (cx + csize < vx) // ADF
		{

			if (cy <= vy) // AD
			{

				if (cy + csize < vy) {

					h = ca(-(cx - vx), -(cy + csize - vy)) +
					    4;
					l = ca(-(cx + csize - vx), -(cy - vy)) +
					    4;
				} // A
				else {

					h = ma(-(cx + csize - vx),
					        -(cy + csize - vy)) +
					    4;
					l = ma(-(cx + csize - vx), -(cy - vy)) +
					    4;
				} // D

			} else {

				h = ca(cy + csize - vy, -(cx + csize - vx)) + 2;
				l = ca(cy - vy, -(cx - vx)) + 2;

			} // F
		} else { // BG
			if (cy <= vy) {
				if (cy + csize < vy) {

					h = ma(-(cy + csize - vy), cx - vx) + 6;
					l = ma(-(cy + csize - vy),
					        cx + csize - vx) +
					    6;
				} // B
				else
					return 0;
			} else {

				h = ma(cy - vy, -(cx + csize - vx)) + 2;
				l = ma(cy - vy, -(cx - vx)) + 2;
			} // G
		}

	} else // CEH
	{

		if (cy <= vy) // CE
		{

			if (cy + csize < vy) {

				h = ca(-(cy - vy), cx - vx) + 6;
				l = ca(-(cy + csize - vy), cx + csize - vx) + 6;
			} // C
			else {

				h = ma(cx - vx, cy - vy);
				l = ma(cx - vx, cy + csize - vy);
			} // E

		} else {

			h = ca(cx + csize - vx, cy - vy);
			l = ca(cx - vx, cy + csize - vy);
		} // H

	}
	// get indexes into occlusion map from angles
	int si = h * (NUMRAYS / 8) + NUMRAYS;
	int ei = l * (NUMRAYS / 8) + NUMRAYS + 1;
	if (ei <= si)
		ei += NUMRAYS;

	for (int i = si; i <= ei; i++) {
		if (dist < rdist[i & (NUMRAYS - 1)])
			// if any value in this segment of the occlusion map is
			// further away then cube is not occluded
			return 0;
	}

	return 1; // cube is entirely occluded
}







|
<
>
|
<
>
|
<
>

>




<
|
>

|
<
|
|
<
>

>


>
|
|


>


|
<
<
|


>


<
|
>
|
<
>
|
<
>

>


<
|
>


<
>

>


<
>







|




<



123
124
125
126
127
128
129
130

131
132

133
134

135
136
137
138
139
140
141

142
143
144
145

146
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161


162
163
164
165
166
167

168
169
170

171
172

173
174
175
176
177

178
179
180
181

182
183
184
185
186

187
188
189
190
191
192
193
194
195
196
197
198
199

200
201
202

	// find highest and lowest angle in the occlusion map that this cube
	// spans, based on its most left and right points on the border from the
	// viewer pov... I see no easier way to do this than this silly code
	// below

	float h, l;
	if (cx <= vx) {

		// ABDFG
		if (cx + csize < vx) {

			// ADF
			if (cy <= vy) {

				// AD
				if (cy + csize < vy) {
					// A
					h = ca(-(cx - vx), -(cy + csize - vy)) +
					    4;
					l = ca(-(cx + csize - vx), -(cy - vy)) +
					    4;

				} else {
					// D
					h = ma(-(cx + csize - vx),
					    -(cy + csize - vy)) + 4;

					l = ma(-(cx + csize - vx),
					    -(cy - vy)) + 4;

				}
			} else {
				// F
				h = ca(cy + csize - vy, -(cx + csize - vx)) + 2;
				l = ca(cy - vy, -(cx - vx)) + 2;
			}
		} else {
			// BG
			if (cy <= vy) {
				if (cy + csize < vy) {
					// B
					h = ma(-(cy + csize - vy), cx - vx) + 6;
					l = ma(-(cy + csize - vy),
					    cx + csize - vx) + 6;


				} else
					return 0;
			} else {
				// G
				h = ma(cy - vy, -(cx + csize - vx)) + 2;
				l = ma(cy - vy, -(cx - vx)) + 2;

			}
		}
	} else {

		// CEH
		if (cy <= vy) {

			// CE
			if (cy + csize < vy) {
				// C
				h = ca(-(cy - vy), cx - vx) + 6;
				l = ca(-(cy + csize - vy), cx + csize - vx) + 6;

			} else {
				// E
				h = ma(cx - vx, cy - vy);
				l = ma(cx - vx, cy + csize - vy);

			}
		} else {
			// H
			h = ca(cx + csize - vx, cy - vy);
			l = ca(cx - vx, cy + csize - vy);

		}
	}
	// get indexes into occlusion map from angles
	int si = h * (NUMRAYS / 8) + NUMRAYS;
	int ei = l * (NUMRAYS / 8) + NUMRAYS + 1;
	if (ei <= si)
		ei += NUMRAYS;

	for (int i = si; i <= ei; i++)
		if (dist < rdist[i & (NUMRAYS - 1)])
			// if any value in this segment of the occlusion map is
			// further away then cube is not occluded
			return 0;


	return 1; // cube is entirely occluded
}