1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
// worldlight.cpp
#include "cube.h"
extern bool hasoverbright;
VAR(lightscale,1,4,100);
void lightray(float bx, float by, persistent_entity &light) // done in realtime, needs to be fast
{
float lx = light.x+(rnd(21)-10)*0.1f;
float ly = light.y+(rnd(21)-10)*0.1f;
float dx = bx-lx;
float dy = by-ly;
float dist = (float)sqrt(dx*dx+dy*dy);
if(dist<1.0f) return;
int reach = light.attr1;
int steps = (int)(reach*reach*1.6f/dist); // can change this for speedup/quality?
const int PRECBITS = 12;
const float PRECF = 4096.0f;
int x = (int)(lx*PRECF);
int y = (int)(ly*PRECF);
int l = light.attr2<<PRECBITS;
int stepx = (int)(dx/(float)steps*PRECF);
int stepy = (int)(dy/(float)steps*PRECF);
int stepl = fast_f2nat(l/(float)steps); // incorrect: light will fade quicker if near edge of the world
if(hasoverbright)
{
l /= lightscale;
stepl /= lightscale;
if(light.attr3 || light.attr4) // coloured light version, special case because most lights are white
{
int dimness = rnd((255-(light.attr2+light.attr3+light.attr4)/3)/16+1);
x += stepx*dimness;
y += stepy*dimness;
if(OUTBORD(x>>PRECBITS, y>>PRECBITS)) return;
int g = light.attr3<<PRECBITS;
int stepg = fast_f2nat(g/(float)steps);
int b = light.attr4<<PRECBITS;
int stepb = fast_f2nat(b/(float)steps);
g /= lightscale;
stepg /= lightscale;
b /= lightscale;
stepb /= lightscale;
loopi(steps)
{
sqr *s = S(x>>PRECBITS, y>>PRECBITS);
int tl = (l>>PRECBITS)+s->r;
s->r = tl>255 ? 255 : tl;
tl = (g>>PRECBITS)+s->g;
s->g = tl>255 ? 255 : tl;
tl = (b>>PRECBITS)+s->b;
s->b = tl>255 ? 255 : tl;
if(SOLID(s)) return;
x += stepx;
y += stepy;
l -= stepl;
g -= stepg;
b -= stepb;
stepl -= 25;
stepg -= 25;
stepb -= 25;
};
}
else // white light, special optimized version
{
int dimness = rnd((255-light.attr2)/16+1);
x += stepx*dimness;
y += stepy*dimness;
if(OUTBORD(x>>PRECBITS, y>>PRECBITS)) return;
loopi(steps)
{
sqr *s = S(x>>PRECBITS, y>>PRECBITS);
int tl = (l>>PRECBITS)+s->r;
s->r = s->g = s->b = tl>255 ? 255 : tl;
if(SOLID(s)) return;
x += stepx;
y += stepy;
l -= stepl;
stepl -= 25;
};
};
}
else // the old (white) light code, here for the few people with old video cards that don't support overbright
{
loopi(steps)
{
sqr *s = S(x>>PRECBITS, y>>PRECBITS);
int light = l>>PRECBITS;
if(light>s->r) s->r = s->g = s->b = (uchar)light;
if(SOLID(s)) return;
x += stepx;
y += stepy;
l -= stepl;
};
};
};
void calclightsource(persistent_entity &l)
{
int reach = l.attr1;
int sx = l.x-reach;
int ex = l.x+reach;
int sy = l.y-reach;
int ey = l.y+reach;
rndreset();
const float s = 0.8f;
for(float sx2 = (float)sx; sx2<=ex; sx2+=s*2) { lightray(sx2, (float)sy, l); lightray(sx2, (float)ey, l); };
for(float sy2 = sy+s; sy2<=ey-s; sy2+=s*2) { lightray((float)sx, sy2, l); lightray((float)ex, sy2, l); };
rndtime();
};
void postlightarea(block &a) // median filter, smooths out random noise in light and makes it more mipable
{
loop(x,a.xs) loop(y,a.ys) // assumes area not on edge of world
{
sqr *s = S(x+a.x,y+a.y);
#define median(m) s->m = (s->m*2 + SW(s,1,0)->m*2 + SW(s,0,1)->m*2 \
+ SW(s,-1,0)->m*2 + SW(s,0,-1)->m*2 \
+ SW(s,1,1)->m + SW(s,1,-1)->m \
+ SW(s,-1,1)->m + SW(s,-1,-1)->m)/14; // median is 4/2/1 instead
median(r);
median(g);
median(b);
};
remip(a);
};
void calclight()
{
loop(x,ssize) loop(y,ssize)
{
sqr *s = S(x,y);
s->r = s->g = s->b = 10;
};
loopv(ents)
{
entity &e = ents[i];
if(e.type==LIGHT) calclightsource(e);
};
block b = { 1, 1, ssize-2, ssize-2 };
postlightarea(b);
setvar("fullbright", 0);
};
VARP(dynlight, 0, 16, 32);
vector<block *> dlights;
void cleardlights()
{
while(!dlights.empty())
{
block *backup = dlights.pop();
blockpaste(*backup);
free(backup);
};
};
void dodynlight(vec &vold, vec &v, int reach, int strength, dynent *owner)
{
if(!reach) reach = dynlight;
if(owner->monsterstate) reach = reach/2;
if(!reach) return;
if(v.x<0 || v.y<0 || v.x>ssize || v.y>ssize) return;
int creach = reach+16; // dependant on lightray random offsets!
block b = { (int)v.x-creach, (int)v.y-creach, creach*2+1, creach*2+1 };
if(b.x<1) b.x = 1;
if(b.y<1) b.y = 1;
if(b.xs+b.x>ssize-2) b.xs = ssize-2-b.x;
if(b.ys+b.y>ssize-2) b.ys = ssize-2-b.y;
dlights.add(blockcopy(b)); // backup area before rendering in dynlight
persistent_entity l = { (int)v.x, (int)v.y, (int)v.z, reach, LIGHT, strength, 0, 0 };
calclightsource(l);
postlightarea(b);
};
// utility functions also used by editing code
block *blockcopy(block &s)
{
block *b = (block *)alloc(sizeof(block)+s.xs*s.ys*sizeof(sqr));
*b = s;
sqr *q = (sqr *)(b+1);
for(int x = s.x; x<s.xs+s.x; x++) for(int y = s.y; y<s.ys+s.y; y++) *q++ = *S(x,y);
return b;
};
void blockpaste(block &b)
{
sqr *q = (sqr *)((&b)+1);
for(int x = b.x; x<b.xs+b.x; x++) for(int y = b.y; y<b.ys+b.y; y++) *S(x,y) = *q++;
remipmore(b);
};
|
|
>
>
|
|
|
|
|
|
>
|
|
>
|
|
|
|
|
|
|
|
>
|
>
|
<
|
|
|
>
|
>
|
|
>
>
>
>
|
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|
|
<
|
|
|
|
|
>
|
|
|
|
|
|
|
>
|
|
|
|
|
|
<
|
>
|
|
|
|
|
>
|
|
>
|
|
|
|
|
<
>
|
|
|
|
|
|
|
|
|
|
>
|
>
>
>
|
>
>
|
|
>
|
>
|
|
|
|
>
>
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
>
|
|
<
|
|
|
|
>
|
>
|
|
>
>
|
>
|
|
|
|
>
>
|
>
|
>
|
>
|
|
>
|
|
|
>
|
|
|
|
|
>
>
|
>
|
|
|
>
>
|
<
<
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
// worldlight.cpp
#include "cube.h"
extern bool hasoverbright;
VAR(lightscale, 1, 4, 100);
void
lightray(float bx, float by,
persistent_entity &light) // done in realtime, needs to be fast
{
float lx = light.x + (rnd(21) - 10) * 0.1f;
float ly = light.y + (rnd(21) - 10) * 0.1f;
float dx = bx - lx;
float dy = by - ly;
float dist = (float)sqrt(dx * dx + dy * dy);
if (dist < 1.0f)
return;
int reach = light.attr1;
int steps = (int)(reach * reach * 1.6f /
dist); // can change this for speedup/quality?
const int PRECBITS = 12;
const float PRECF = 4096.0f;
int x = (int)(lx * PRECF);
int y = (int)(ly * PRECF);
int l = light.attr2 << PRECBITS;
int stepx = (int)(dx / (float)steps * PRECF);
int stepy = (int)(dy / (float)steps * PRECF);
int stepl =
fast_f2nat(l / (float)steps); // incorrect: light will fade quicker
// if near edge of the world
if (hasoverbright) {
l /= lightscale;
stepl /= lightscale;
if (light.attr3 ||
light.attr4) // coloured light version, special case because
// most lights are white
{
int dimness = rnd(
(255 -
(light.attr2 + light.attr3 + light.attr4) / 3) /
16 +
1);
x += stepx * dimness;
y += stepy * dimness;
if (OUTBORD(x >> PRECBITS, y >> PRECBITS))
return;
int g = light.attr3 << PRECBITS;
int stepg = fast_f2nat(g / (float)steps);
int b = light.attr4 << PRECBITS;
int stepb = fast_f2nat(b / (float)steps);
g /= lightscale;
stepg /= lightscale;
b /= lightscale;
stepb /= lightscale;
loopi(steps)
{
sqr *s = S(x >> PRECBITS, y >> PRECBITS);
int tl = (l >> PRECBITS) + s->r;
s->r = tl > 255 ? 255 : tl;
tl = (g >> PRECBITS) + s->g;
s->g = tl > 255 ? 255 : tl;
tl = (b >> PRECBITS) + s->b;
s->b = tl > 255 ? 255 : tl;
if (SOLID(s))
return;
x += stepx;
y += stepy;
l -= stepl;
g -= stepg;
b -= stepb;
stepl -= 25;
stepg -= 25;
stepb -= 25;
};
} else // white light, special optimized version
{
int dimness = rnd((255 - light.attr2) / 16 + 1);
x += stepx * dimness;
y += stepy * dimness;
if (OUTBORD(x >> PRECBITS, y >> PRECBITS))
return;
loopi(steps)
{
sqr *s = S(x >> PRECBITS, y >> PRECBITS);
int tl = (l >> PRECBITS) + s->r;
s->r = s->g = s->b = tl > 255 ? 255 : tl;
if (SOLID(s))
return;
x += stepx;
y += stepy;
l -= stepl;
stepl -= 25;
};
};
} else // the old (white) light code, here for the few people with old
// video cards that don't support overbright
{
loopi(steps)
{
sqr *s = S(x >> PRECBITS, y >> PRECBITS);
int light = l >> PRECBITS;
if (light > s->r)
s->r = s->g = s->b = (uchar)light;
if (SOLID(s))
return;
x += stepx;
y += stepy;
l -= stepl;
};
};
};
void
calclightsource(persistent_entity &l)
{
int reach = l.attr1;
int sx = l.x - reach;
int ex = l.x + reach;
int sy = l.y - reach;
int ey = l.y + reach;
rndreset();
const float s = 0.8f;
for (float sx2 = (float)sx; sx2 <= ex; sx2 += s * 2) {
lightray(sx2, (float)sy, l);
lightray(sx2, (float)ey, l);
};
for (float sy2 = sy + s; sy2 <= ey - s; sy2 += s * 2) {
lightray((float)sx, sy2, l);
lightray((float)ex, sy2, l);
};
rndtime();
};
void
postlightarea(block &a) // median filter, smooths out random noise in light and
// makes it more mipable
{
loop(x, a.xs) loop(y, a.ys) // assumes area not on edge of world
{
sqr *s = S(x + a.x, y + a.y);
#define median(m) \
s->m = \
(s->m * 2 + SW(s, 1, 0)->m * 2 + SW(s, 0, 1)->m * 2 + \
SW(s, -1, 0)->m * 2 + SW(s, 0, -1)->m * 2 + SW(s, 1, 1)->m + \
SW(s, 1, -1)->m + SW(s, -1, 1)->m + SW(s, -1, -1)->m) / \
14; // median is 4/2/1 instead
median(r);
median(g);
median(b);
};
remip(a);
};
void
calclight()
{
loop(x, ssize) loop(y, ssize)
{
sqr *s = S(x, y);
s->r = s->g = s->b = 10;
};
loopv(ents)
{
entity &e = ents[i];
if (e.type == LIGHT)
calclightsource(e);
};
block b = {1, 1, ssize - 2, ssize - 2};
postlightarea(b);
setvar("fullbright", 0);
};
VARP(dynlight, 0, 16, 32);
vector<block *> dlights;
void
cleardlights()
{
while (!dlights.empty()) {
block *backup = dlights.pop();
blockpaste(*backup);
free(backup);
};
};
void
dodynlight(vec &vold, vec &v, int reach, int strength, dynent *owner)
{
if (!reach)
reach = dynlight;
if (owner->monsterstate)
reach = reach / 2;
if (!reach)
return;
if (v.x < 0 || v.y < 0 || v.x > ssize || v.y > ssize)
return;
int creach = reach + 16; // dependant on lightray random offsets!
block b = {(int)v.x - creach, (int)v.y - creach, creach * 2 + 1,
creach * 2 + 1};
if (b.x < 1)
b.x = 1;
if (b.y < 1)
b.y = 1;
if (b.xs + b.x > ssize - 2)
b.xs = ssize - 2 - b.x;
if (b.ys + b.y > ssize - 2)
b.ys = ssize - 2 - b.y;
dlights.add(blockcopy(b)); // backup area before rendering in dynlight
persistent_entity l = {
(int)v.x, (int)v.y, (int)v.z, reach, LIGHT, strength, 0, 0};
calclightsource(l);
postlightarea(b);
};
// utility functions also used by editing code
block *
blockcopy(block &s)
{
block *b = (block *)alloc(sizeof(block) + s.xs * s.ys * sizeof(sqr));
*b = s;
sqr *q = (sqr *)(b + 1);
for (int x = s.x; x < s.xs + s.x; x++)
for (int y = s.y; y < s.ys + s.y; y++)
*q++ = *S(x, y);
return b;
};
void
blockpaste(block &b)
{
sqr *q = (sqr *)((&b) + 1);
for (int x = b.x; x < b.xs + b.x; x++)
for (int y = b.y; y < b.ys + b.y; y++)
*S(x, y) = *q++;
remipmore(b);
};
|